

Energy Design Conference 2016

Test Protocols & Results: Airport Sound Program and Building America Field Tests

Dave Bohac, PE Center for Energy and Environment

.....

MSP Airport Sound Program Weatherization To Reduce Sound

- Replace or upgrade windows & install central AC
- > Attic air sealing & attic and wall insulation
- Borrowed specs from energy programs, used weatherization contractors, strong QC requirements
- Average house leakage (average 30% reduction)
 - Before: 7.8 ACH50
 - > After: 5.4 ACH50

Tightening work on 3,200 homes with limited testing, what could possibly go wrong?

U.S. DEPARTMENT OF Energy Efficiency & **ENERGY Renewable Energy**

Program Shutdown (1996)

Saturday OCTOBER 5, 1996 Minneapolis Edition

Some noise-insulated homes unsafe

StarTribune

NEW SPAPER OF THE TWIN CITIES

A Star Tribune investigation revealed threes in the Metropolitan Airports Commission (MAC) sound insulation program and safety issues in some insulated houses. MAC was told about air quality and monsture problems four sours ages. New the MAC is proposing to fix the program and requir formes.

By Karen Touss and Donna Hatronees San Thilland King Writers

A program in insulate throughdy of borrows near Minneepolie W. Paul International Airport against aisplant noise it making some of three. Is projected to that shout \$2.25 million other amounts has their indishitance, the New Beyow has Social.

An appert who issued for sound insulated somers for the lane Tribune found that three see new structural hosegoity of making them dayor mostly excision commutators, by all space, Industry white share because were trained with sensite of the exhemt of the problems.

is assignment to the Size Tobutos (proveriganion).

program administrators will increased to a Mennyedinan Airports Communitor (MACI southmittee Tuesday that MAC combuct kallery track inabar meine than 2.300 homises it fore insulated and make repairs where measure. A plan to comfact safery tests to every house iterateed in the furner already has been approved. M&C officials said."

"I want to lazere the hope knowing that averything is operating property," said Tons Berneth, MAC's sumstructions animager Bod the prioriam.

Program administrators what said they will reconnected by MAC that carloss monochly deteching he delivered he every sound boundared

The restordial week, including beeling, repairs and the addition of eachest monoislide detectors.

In October (1933, MAC began teeting the au quality to 20 process id the houses it was invided log. The MAC gave seet results hi the Mar Tollsone this week alrowing that 4.7 percent were nor made his found the other two have serious sight. That is, they laded to meet national stilleness problems that are damaging the statillards for safe indoor air spallry, which means the houses don't get emough levels air to replace state air tained by indeed pellutants.

Tarm in MAC on A14

Residents in the southwest side of Lake Nokomis is Minneapolis and attent who fae near tilissegnale St. Paul International Report are part of a Methypolitan Airports Commission as ministered program to insulate about \$1,000 homes against jot make

Inside:

- Linta International and autofied alth the assest insulation bill others are conciemed about the mostly of all in their homes.""I'm smit scory to think fluid wethe this to change name got-Artist, and how we we kine 7 stimped of spanits 7 sould one seamer. Turns to \$14.

> Electricity incompany sign had there that Dis insurlation will reduce the first. of freed on into the horse and that I is an it there is pusted to a light the second Some Three In \$5%.

> When there is an inreconnected an annexit in your funtion and school Tank burning appliances are not spaceting as intended, your busine in annuale. Tarry De 315.

Spurred safety testing

Program Response

Do No Harm

Panel of international building science experts establish standards & on-going review

U.S. DEPARTMENT OF

- Design safety into 5,000 future homes
 - Test before work & homeowner fix failures
 - Program work: tighten, add ventilation and select treatments to maintain safe operation – keep existing equipment when possible
 - Test after work complete and fix/retest as necessary

Go back to 3,200 completed homes

Similar approach for Milwaukee (3,000 homes) & San Antonio (5,000 homes)

Full report: http://www.state.mn.us/mn/externalDocs/Commerce/ Ventilation_and_Depressurization_Research_022003031343_VentilationReport.pdf

Combustion Safety Tests

- > Natural gas appliance flue carbon monoxide
- Vented appliance worst-case combustion spillage
- Measure mechanical room (CAZ) worst-case pressure for design purposes
- Estimate depressurization after tightening & added (or reduced) exhaust flow => power-vent water heater or ?

.....

Appliance Carbon Monoxide: a maintenance issue

Standards

Ovens: 150ppm

Others: 100ppm

- Local gas utility service standard
- National WX practice
- National appliance = 400ppm "air free"

Failure Rate

Ovens:	25%
Water Heaters:	4%
Furnaces:	14%

.....

Energy Efficiency &

Draft pressure: a good predictor of spillage?

thorn ST_{2}

Initially used draft pressure for pass/fail Many water heaters failed draft and passed spillage Used spillage monitoring study to evaluate draft standard

- Monitored water heaters that failed draft pressure standard & passed spillage
- 394 water heaters monitored 60 days for spillage
- 87% had no spillage events
- Only1 failed: had spillage that was greater than 5% of the operating time

Result: draft pressure no longer used for pass/fail

U.S. DEPARTMENT OF

Appliance Combustion Spillage ------

Standards

"Worst-case" – turn on all exhaust fans/appliances, open/close doors, air handler on/off

Duration – furnace 1 minute & water heater 3 minutes

Failure Rate

Water Heaters:	19%
Furnaces:	10%

Depressurization & vent sizing

orthorn S'

What Causes Water Heater Spillage?

U.S. DEPARTMENT OF

ENERGY

Spillage Result	Frequency	WC Pres. (Pa)	WC < Limit	Vent Cap / Input
Pass Both	81%	-1.0	8%	0.97
Pass Natural/Fail WC	9%	-3.5	51%	0.96
Fail Both	11%	-1.1	9%	0.79

"Natural" = No depressurization

>1 indicates sizing is OK

- Pass Both Conditions: low depressurization and properly sized common vent (e.g. chimney)
- Pass Natural/Fail WC: about half have WC pressure > limit
- Fail Both: undersized chimney or vent connectors

Depressurization & vent sizing

Water Spillage Failure Rate

ENERG

WC Depressurization (Pa)							
0 to 3 3 to 5 5+							
5%	24%	82%					

- Very LOW spillage failure when WC pressure < 3 Pa (5%)</p>
- Very <u>HIGH</u> failure when WC pressure > 5 Pa: (82%)
- ➢ WC pressure 3 to 5 Pa: sometimes fails

Good indicator of when start having problems. Not highly reliable for predicting pass/fail for moderate conditions.

Depressurization & vent sizing Water Heater Spillage Failure Rate

For Natural Conditions

Connector Ratio	Chimney Cap/Input Rate								
	< 0.85	>= 0.85	All						
< 0.6	39%	18%	31%						
0.6 - 0.8	15%	7%	11%						
0.8 - 1.0	8%	11%	10%						
1.0 - 1.2	5%	1%	3%						
1.2 – 1.4	6%	7%	6%						
> 1.4	2%	2%	2%						
All	14%	7%	11%						

High failure when chimney more than 15% undersized and connectors more than 20 - 40% undersized

Vent Sizing

Half or more of the spillage problems were due to undersized or improperly installed vents

U.S. DEPARTMENT OF

ERG

- The venting tables in the code have been around since the 1950's with an update in the 1980's
 - Time-tested
 - Will solve most problems

Source: Larry Brand, GTI

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

ENERGY

Vent Capacity Tables

Example:

- 100,000 Btu/hr furnace
- 40,000 Btu/hr water heater
- Common vented
- Type B double wall vent
- Type B double wall connector
- 2 ft rise
- 20 ft common vent height

Result:

- 4 inch vent connector for water heater,
- 5 inch vent connector for furnace

Та	bl	e	13	.2(a	a)	1	Гуре Doub	B le-V	Vall	Vent			N	umb	er o Ap	f App plian	olian ce Ty	ces:	Two Cate	or M gory	More 7 I	1. 197			6.1
/en	t CO	DNN	IEC	TOR	Cap	acit	ty	-		n I Segund t			ррпа	nce	vent	Con	necti	on:	Type	DI	Joub	ie wa	an C	onne	ctor
									T	ype l	B D	oubl	e-Wa	11 C	onne	ector	Diar	nete	r — 1	D in		lu des			
			3			(4))		(5)			6			7			8	-		9	qL.		10	
					_	Ā		A	- Aia	ince I	npu	t Ra	ting	Lim	its in	n The	ousar	nds o	of Btu	1 pe	r Ho	ur	1.11	-	-
feight	Rise	F	AN	NAT	FA	N	NAT	FA	N	NAT	FA	IN	NAT	FA	N	NAT	FA	N	NAT	FA	N	NAT	F/	N	NAT
00	00	Min	Max	Max	Min	Ma	Max	Min	Max	Max	Min	Max	Max	Min	Max	Max	Min	Max	Max	Min	Max	Max	Min	Max	Max
6	1	22	37	26	35	66	46	46	106	72	58	164	104	77	225	142	92	296	185	109	376	237	128	466	289
	2	23	41	31	37	75	55	48	121	86	60	183	124	79	253	168	95	333	220	112	424	282	131	526	345
	3	24	44	35	38	81	62	49	182	96	62	199	139	82	275	189	97	363	248	114	463	317	134	575	386
8	1	22	40	27	35	72	48	49	114	76	64	176	109	84	243	148	100	320	194	118	408	248	138	507	303
	2	23	44	32	36	80	57	51	128	90	66	195	129	86	269	175	103	356	230	121	454	294	141	564	358
	3	24	47	36	37	87	64	53	189	101	67	210	145	88	290	198	105	384	258	123	492	330	143	612	402
10	1	22	43	28	34	78	50	49	123	78	65	189	113	89	257	154	106	341	200	125	436	257	146	542	314
	2	23	47	33	36	86	59	51	186	93	67	206	134	91	282	182	109	374	238	128	479	305	149	596	372
	3	24	50	37	37	92	67	52	116	104	69	220	150	94	303	205	111	402	268	131	515	342	152	642	417
15	1	21	50	30	33	89	23	47	182	83	64	220	120	88	298	163	110	389	214	134	493	273	162	609	333
	2	22	53	35	35	96	23	49	103	99	66	235	142	91	320	193	112	419	253	137	532	323	165	658	394
-	3	24	>>	40	36	102	V	51	12	111	68	248	160	93	339	218	115	445	286	140	202	365	16/	700	999
200	5	22	57	27	22	100	20	40	1/7	8/	62	240	125	80	339	1/1	10/	430	229	131	202	285	158	081	39/
	Ý	44	5/	3/	34	105	00	40	10/	116	64	279	149	07	371	202	110	402	205	124	20/	202	101	743	419
30	3	20	62	32	31	113	50	45	191	03	60	2/1	136	91	301	192	103	480	239	125	640	205	151	202	377
50	2	20	64	30	33	119	70	47	101	110	62	200	159	00	391	215	105	535	200	120	670	360	155	840	120
	3	22	66	44	34	123	70	48	190	124	64	300	178	00	400	262	109	555	317	132	706	405	159	974	400
50	1	19	71	36	30	133	64	43	216	101	57	349	145	78	423	197	97	627	257	120	700	330	144	0/4	403
10	2	21	73	43	32	137	76	45	223	119	59	358	172	81	490	234	100	645	306	123	820	392	148	1014	479
	3	22	75	48	33	141	86	46	229	134	61	366	194	83	502	263	103	661	343	126	842	441	151	1043	539
100	1	18	82	37	28	158	66	40	262	104	53	442	150	73	611	204	91	810	266	112	1038	341	135	1285	417
	2	19	83	44	30	161	79	42	267	123	55	447	178	75	619	242	94	822	316	115	1054	405	139	1306	494
	2	20	84	50	31	163	80	44	272	139	57	150	200	70	627	272	07	834	255	110	1060	455	142	1207	550

Source: Larry Brand, GTI

Page 13NFPA 54 vent tables programmed into "vent test" checked on every home

* Vent upgrades included in work scope

Work Type	Frequency
None	28%
Connectors	38%
Liners	22%
PV/DV water heater or chimney-top inducer	20%
Custom	6%

Fix: replace saddle with stacked tee to meet code

Reduce restriction & increase rise

- metal common vent / liner
- larger connector (4")
- 2 fewer elbows (10% ea)
- 1' more rise at diverter
- direct into vertical stacked tee (10%)
- system is more resistant to low depressurization

NorthernSTAR

U.S. DEPARTMENT OF

ENERGY

Power or direct vent water heater: 15%

Chimney-top draft inducer: 5%

Energy Efficiency &

Renewable Energy

Water heater spillage test failures doubled during warmer weather

Outside Temperature (F)	Spillage Failure Rate
> 80	36%
60 - 80	28%
40 - 60	31%
20 - 40	14%
< 20	14%
All (1071 tests)	23% (249 fails)

does not include tile liners

Big picture - combustion evaluation

horn S"

- Spillage test: does it work now? (pass/fail)
- Measured depressurization vs guideline: will it work after weatherization & in other weather? (guidance)
- Higher rate of warm weather spillage fails: no method of compensating

Combustion Safety Test Procedure

Is setting up worst-case depressurization really necessary to catch combustion safety failures?

> Can we develop a simplified test procedure that:

- Easier to perform & more repeatable
- Reduces "failures" for acceptable situations
- Still finds hazardous situations

DOE Building America sponsored field research

Simplified Test Conditions

	Test Procedure							
	Comprehensive	BPI 2015	Simplified					
Dryer & Kitchen	On	On	On					
Next Largest Exhaust Fan	On	On	On					
Other Exhaust Fans	On	On	Off					
CAZ Door	Check	Check	Closed					
Other Doors	Check	Open= exhaust fan or return register in room	Open= exhaust fan or return register in room					
Air Handler	Check	Check	Check					

Check= which ever produces lowest CAZ pressure

Simplified and BPI Test Methods

Maximum spillage duration

- Water heaters & warm vent furnace/boiler = 2 minutes
- Cold vent furnace/boiler = 5 minutes
- Draft pressure not used for pass/fail
- CAZ depressurization not used for pass/fail

 Field Study: monitor spillage under normal operation

horn S'

- Selection Criteria:
 - Spillage fail for simplified conditions
 - Spillage pass: kitchen fan= low & other fans off
- > 11 homes in Minnesota and Wisconsin
- Atmospheric draft natural gas water heaters in basements
- > Data collection for 3 to 6+ months, 1500 days of data

House Characteristics

	Minimum	Maximum	Average
Air Leakage (ACH50)	3.9	11.1	6.2
Kitchen Fan (cfm), [10/11]	121	276	219
Bathroom Fan (cfm), [11/11]	30	130	65
2 nd Bath Fan (cfm), [7/11]	20	72	41
CAZ Depress (Pa)	-1.9	-13.7	-6.9

Depressurization Conditions

orthernSTA

Comprehensive versus Simplified

Simplified Depressurization (in Pa)

hern.S'

Comprehensive versus BPI

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

BPI Depressurization (in Pa)

For these 11 houses: interior door position can be determined by whether there is Page 25 an exhaust fan or return register in the room

Building AMERICA U.S. Department of Energy

Cold Vent Establishment Pressure

orthern.S'

Greatest depressurization that the water heater can overcome

U.S. DEPARTMENT OF

ENERGY

Conclusions

- Worst-case test conditions about equal for Simplified and Comprehensive methods.
- Large variation in level of depressurization required to cause spillage (-1.7 to -7.4 Pa).

Next speaker: Dan Cautley- monitoring results