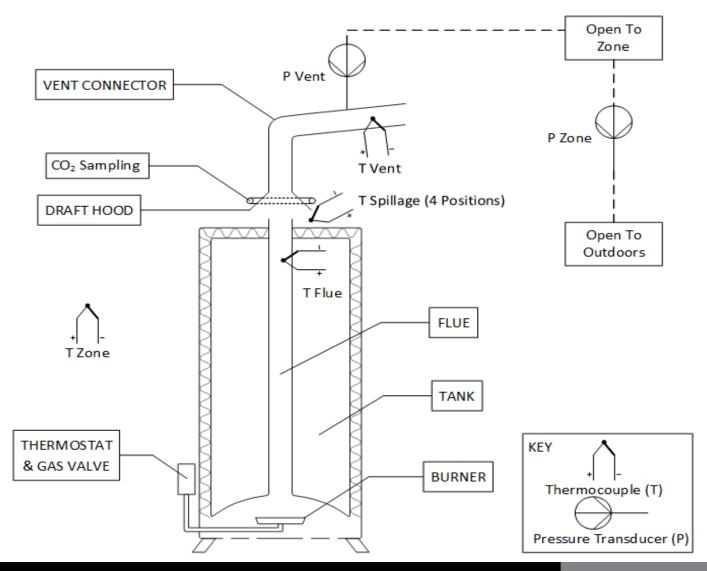
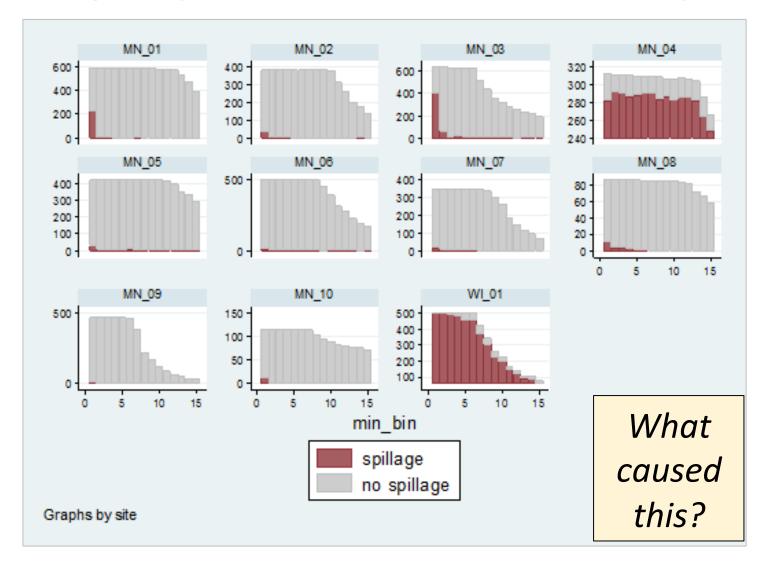


# Combustion Products Spillage from Gas Water Heaters Monitoring Results


Dan Cautley Seventhwave

MN Energy Design Conference, Duluth Feb, 2016


#### Our Field Study

- 11 homes, MN and WI
- Atmospheric draft natural gas water heaters in basements
- Measured or observed
  - Burner operation (via temperature)
  - CO2 near draft hood (as indicator of spillage)
  - Pressures and fan status
  - Etc
- Data collection for 3 to 6+ months, 1500 days of data
- Part of overall project including testing each home, and a survey

## Monitoring setup CO2 near vent used to identify spillage



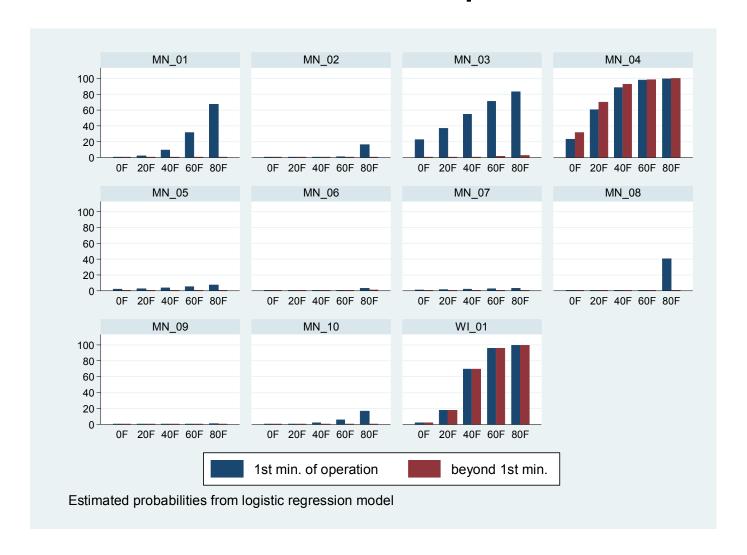
#### Spillage by minute of operation, by site



### Two sites showed excessive spilling; both had venting defects

 MN\_04 had an undersized water heater vent (vent capacity = 75% of burner input)




 WI\_01 had a large opening downstream of the water heater (unused, partially repaired connection for a furnace)



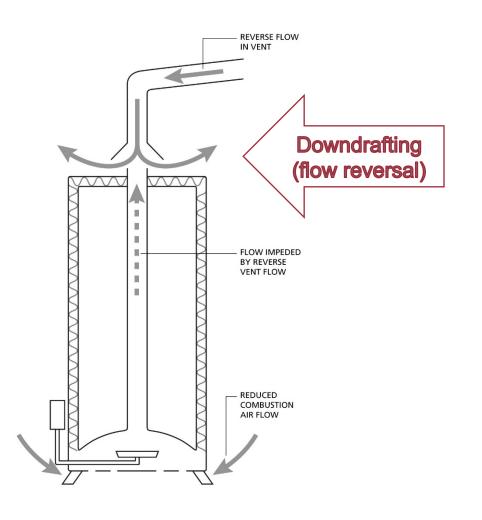
Water heater and unused furnace vent

Images courtesy CEE

# Effect of first minute of operation and outdoor temperature

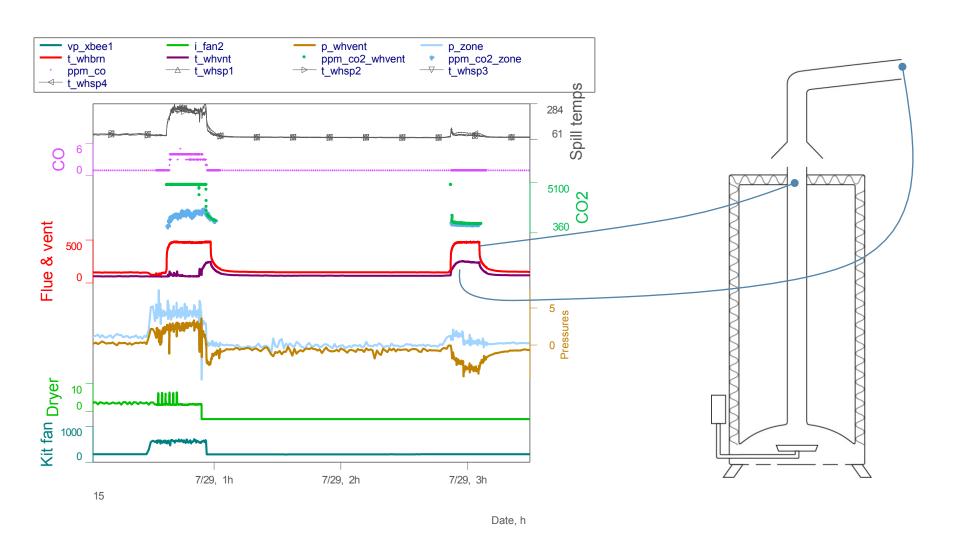


### Logistic regression: Effect of first minute, outdoor temp, & zone pressure


| Site  | _        | 1st minute of operation (binary) |      | Outdoor temperature (F) |      | Combustion zone depressurization relative to outside (Pa)§ |  |  |  |
|-------|----------|----------------------------------|------|-------------------------|------|------------------------------------------------------------|--|--|--|
|       |          |                                  |      |                         |      |                                                            |  |  |  |
| MN 01 | 1,005.01 | ***                              | 1.10 | ***                     | 1.46 | ***                                                        |  |  |  |
| MN 02 | 213.78   | ***                              | 1.23 | ***                     | 4.29 | ***                                                        |  |  |  |
| MN 03 | 171.39   | ***                              | 1.07 | ***                     | 1.65 | ***                                                        |  |  |  |
| MN 04 | 0.65     | *                                | 1.10 | ***                     | 1.21 | *                                                          |  |  |  |
| MN 05 | 15.61    | ***                              | 1.06 | ***                     | 2.36 | ***                                                        |  |  |  |
| MN 06 | 3.69     | ***                              | 1.10 | ***                     | 1.39 | ***                                                        |  |  |  |
| MN 07 | 31.48    | ***                              | 1.03 |                         | 2.32 | ***                                                        |  |  |  |
| MN 08 | 244.16   | ***                              | 1.27 | ***                     | NA†  |                                                            |  |  |  |
| MN 09 | 13.81    | ***                              | 1.09 | *                       | 2.79 | ***                                                        |  |  |  |
| MN 10 | 396.99   | ***                              | 1.13 | **                      | 2.74 | ***                                                        |  |  |  |
| WI 01 | NA‡      |                                  | 1.13 | ***                     | 1.07 | *                                                          |  |  |  |

Remember, most absolute values quite small!

### Logistic regression: Odds ratios for individual fans, air handlers, & doors


| Site  | Drye  | er  | Kitche | n fan | Bath | fan 1 | Bath fa | an 2 | Air hand | ller | Door |    |
|-------|-------|-----|--------|-------|------|-------|---------|------|----------|------|------|----|
| MN 01 | 3.17  | *** | 2.91   | ***   | ND   |       | ND      |      | ND       |      | NV   |    |
| MN 02 | 15.03 | *** | ND     |       | 1.78 |       | 19.17   | ***  | 1.93     |      | NV   |    |
| MN 03 | 3.28  | **  | 27.07  | ***   | 2.40 | ***   | 0.76    |      | 2.37     | **   | NV   |    |
| MN 04 | 1.90  |     | AS     |       | ND   |       | ND      |      | ND       |      | NV   |    |
| MN 05 | 2.18  | **  | NS     |       | NV   |       | ND      |      | 1.04     |      | 1.95 |    |
| MN 06 | NS    |     | NV     |       | 2.75 | **    | ND      |      | 1.79     |      | ND   |    |
| MN 07 | NS    |     | 13.10  | ***   | NS   |       | ND      |      | 16.09    | **   | NV   |    |
| MN 08 | NV    |     | NV     |       | ND   |       | ND      |      | NV       |      | NV   |    |
| MN 09 | 4.21  |     | NS     |       | NS   |       | ND      |      | 9.E+04   | ***  | 0.06 | ** |
| MN 10 | ND    |     | ND     |       | 0.55 |       | ND      |      | NS       |      | NV   |    |
| WI 01 | 1.73  |     | ND     |       | NV   |       | ND      |      | 0.91     |      | 1.05 |    |

#### Downdrafting – vents goin' crazy



| Site  | Number of episodes | Number of minutes in down-drafting | Maximum duration |
|-------|--------------------|------------------------------------|------------------|
| MN 01 | 34                 | 283                                | 44               |
| MN 02 | 27                 | 140                                | 63               |
| MN 03 | 71                 | 791                                | 92               |
| MN 04 | 48                 | 1,038                              | 383              |
| MN 05 | 1                  | 1                                  | 1                |
| MN 06 | 0                  |                                    |                  |
| MN 07 | 142                | 1,670                              | 102              |
| MN 08 | 0                  |                                    |                  |
| MN 09 | 1                  | 6                                  | 6                |
| MN 10 | 18                 | 406                                | 137              |
| WI 01 | 105                | 1,042                              | 211              |
| Total | 447                | 5,377                              | 383              |

### Downdrafting behavior



#### Contributors to downdraft formation

- Similar to spillage in general (zone depressurization, individual fan operation, higher outdoor temperature all appear to contribute)
- NOT clear when and why it becomes stable at some times, not others

#### Conclusions

- Typical, normal systems don't spill excessively, and don't produce much carbon monoxide
- Vent defects are an important cause, perhaps the largest cause, of excessive spillage. Vent inspection is *critically important* in evaluating safe operation.
- Testing in current form may not tell us much about the propensity of water heaters to spill beyond the first minute
- Downdraft formation remains somewhat mysterious, is not predicted by testing, and needs more work