

The Commercial Energy Codes Support Program

Enhanced Energy Code Compliance, 2014 CARD Grant

Russ Landry P.E. LEED AP | Senior Mechanical Engineer, Pl **Megan Hoye LEED AP** | Engagement Coordinator, Pilot Mgr.

• Takeaways...

- 1. Increase awareness of the pilot program & how it could benefit you
- 2. What work is being done in other states around commercial code support
- 3. What future work or opportunities might come from this study

Context	What other states are doingIssues & challenges that we are focused on
Program	 Introduction to & the intent of the pilot program Walk thru of program approaches & the audior

- Walk-thru of program approaches & the audiences
- Tools & processes

Evaluation

Anatomy

- Benefits to participants & potential opportunities for utilities & cities
- What information the study will be evaluating & questions we will be answering
- Audience questions & discussion

Context: Other States & Issues to Address in MN

Trends in Commercial Energy Code

Trends in Commercial Energy Code

- Moving towards whole-building requirements
- MN Commercial Energy Code has <u>two</u> compliance path options - 1st time in MN (*Effective as of June 2, 2015*)
 - 1. ASHRAE 90.1-2010

PERFORMANCE & PRESCRIPTIVE OPTIONS

2. International Energy Conservation Code (IECC) 2012 PERFORMANCE & PRESCRIPTIVE OPTIONS

*MN specific amendments made to IECC version

- ASHRAE 2010/IECC 2012 have more significant changes an the previous 2 code iterations
- Other states have seen increasing use of IECC path (friendly for small-medium projects)

Major Changes & Additions

- Lighting controls & sensors
- Window areas & orientation
- Wall & slab U-values
- Duct construction & leakage testing
- Outdoor air temperature reset controls, zone controls & VAV box reheat limits
- Commissioning thresholds
- Additional Efficiency
 Package Requirements

Code Implementation Feedback

- Interviewed code officials from other states already adopted ASHRAE 2010/IECC 2012
- 6 states, 11 cities
- Submission documentation noted as area needing support
- No Service Hot Water requirements flagged

Pg. 8

Approaches in Other States

Example 1 | Georgia

- Creating compliance support through tools (Residential & Commercial)
- Developed software & web-based compliance tools
- Construction guides outline best practices (drawing details & photos)

Example 1 | Florida

- Lack of resources at municipal levels & high commercial permit volume
- Launched Circuit Rider Program in 2014 (Residential & Commercial)
- Program provides support now & gathers info on how to provide focused technical support in the future
 - Provide technical assistance on energy code plan reviews
 - Help local code offices share best practices
 - Helping provide education around existing buildings
 - Working with building departments to better define enforcement responsibilities

http://www.seealliance.org/

Example 2 | Rhode Island

• Providing field training to field professionals & code Officials (Residential & Commercial – emphasis on residential)

Energy Impact by Building Use

Energy Impact by Measure & Building

Percentage of energy use normalized (impact/SF)

Center for Energy and Environment

Minnesota Interviews

Professional Type	Metro Area	Greater MN	Total	Knowledge of New Code
Code Officials	3	4	7	
Architects	4	1	5	Madarata/Low
Engineers	3	0	3	woderate/Low
Builders	1	1	2	

Program Anatomy: Pilot Approach, Process, & Tools

PILOT 2015-2017 The Commercial Energy Codes Support Program

PRIMARY OBJECTIVE | Establish a successful precedent for CIP funded commercial energy code compliance programs in Minnesota

ACTIVITIES |

- Develop & deliver 2 targeted, parallel pilot approaches
- Evaluate the energy savings & cost-effectiveness of these approaches; post-participant surveys
- Document lessons learned to guide potential program design
- Evaluate the potential for a 2nd Tier whole-building path

Project Timeline

*Anticipated research end dates

Approaches & Scope

 Test the energy savings impacts of <u>2 approaches</u> under <u>1 program umbrella</u>

Commercial Energy Codes Support Pilot			
Pilot Approach 1	Pilot Approach 2		
Small/Prescriptive Building Projects	Large/Complex building projects		
Project Teams: Architects, Engineers, & Contractors	Cities: Building Officials & Planning Departments		
Participate (test): ~30 Observe (control): ~30	Participate (test): 10-15 Observe (control): na		

What Guided Program Development?

INFORMED APPROACH 1 & 2

- Identify code measure issues
- Targeting building use types & sizes
- Identifying the energy impact intersection
- Interest from the field/industry
- Selecting a *Tier 2* energy standard
- Project volumes in Partner cities & Minnesota

Collecting Code Issues

NEW CODE:

- Interviewed 13 out-of-state code officials (IECC 2012)
- New and updated requirements

EXISTING CODE:

- Analyzing Dept. of Labor & Industry data (2013 study)
- Conversations with code officials:
 - Metro-area
 - Greater-Minnesota
- Interviews with Minnesota architects, engineers & builders

Scope of Program Measures

*Varies depending on counting method. This looked at ASHREA & IECC.

Program Design

Approach 1 | Small / Prescriptive Projects DESIGN TEAM SUPPORT City Plan Reviews & Building Inspections

Approach 2 | Large / Complex Projects CODE STAFF SUPPORT

Program Incentive

Approach 1 | Small / Prescriptive Projects DESIGN TEAM SUPPORT City Plan Reviews & Building Inspections

	Project Client	Design Team**
Tier 1 Meet all Program Requirements*	\$500	\$275
Tier 2 Meet Program Requirements and Meet ASHRAE Advanced Energy Design Guidelines*	\$250	\$200

Focused Tools

Example 1| Making Early Design Decisions

- Scenario: Restaurant renovation
- Tools help guide decisions around mechanical & lighting system controls that will be needed so that chiller sizing & cost can be estimated most accurately early in design

. SYSTEM REQUIREMENTS	Duct Sealing & Testing	IECC & Sealing to class A applies to all ducts and plenums with a pressure class ASHRAE: rating. Leakage testing is required in systems with static pressures above 3 inches water column (750 Pa).	Multifamily Offices Restaurants Retail Spaces	Sealing applies to all buildings Testing seldom appliesonly if high pressure ductwork.
IANICAL	Supply-Air Temperature	IECC: This applies to multizone HVAC systems EXCEPT zones with <300 cfm air flow. Is not required if reheat is via site recovered heat or site solar.	Multifamily	Seldom appliesonly if multizone hvac system with reheat.
3 MECH	Reset for Multizone Systems*	ASHRAE: ASHRAE: nameplate hp ≤ 5 hp (including exhaust fans). Is not required if reheat is via site recovered heat or site solar.	Offices	Applies to multizone systems with reheat.
NILDIN	R		Restaurants	Seldom appliesonly if multizone hvac system with
8			Retail Spaces	reheat.

Focused Tools

Example 2 | Documentation Best Practices

- Scenario: Office new construction
- Tools layout CD & spec documentation best practices making plan reviews, simplifying plan review revisions & inspections

MEACUDE	PEOLIDED INCODMATION (when applicable)		PROJECT TEAM CHECK-	CEE REVIEWER CHECK-
Roof Insulation R-Value	1. The R-value of all insulating roof assembly components (at least the min. & max.).	 In addition to insulation thickness, clearly note the minimum R value on the drawings. Also clearly note the minimum thickness for tapered insulation. 	01	UN
Above Grade Wall Insulation	 Indicate the R-value for all wall/wall assembly components for which any part of the wall is above grade. 	 Include the R-vaklue of the wall assembly or assembly component in the an Assembly Schedule. 		
Slab Edge Insulation	 Indicate the slab material, thickness, and total R-value of the slab OR the depth below grade at the top of the slab. 	 Include this information on the architectural drawings. 		
Window U- Factor	1. All window or window assembly and door or door assembly U-factors.	 All window or window assembly and door or door assembly U-factors. 		

Recruitment to Date

	Participating Projects	Control (Observed)
Small Building Projects (Approach 1)	4 (1/month avg.)	2 (1/2 month avg.)
	Mostly restaurant & retail; has been some demand for assembly building types	
Large Building Projects (Approach 2)	2	na
	Partnerships with cities help plan for future projects; 3-4 more in the pipeline currently	

Evaluation: Benefits, Evaluation Questions, & Future Impact

• What Data Is Being Collected?

- Project Team Discussions & Observations
- Preliminary Plan Review
- Permit (final) Plan Review
- On-site Verification
- Post-Participation Surveys (cities & project teams)

Benefits: Small Buildings Approach 1

Design/Project Team Participants (primary audience)

- Fewer requirements that require design modification post city plan-review
- Reduced need for change orders after CD completion
- A better performing building for client/owner
- CONTINUE?? (Megan)

Benefits to Cities

- Cleaner review process for City plan reviewers
- Better match between CDs & built conditions to make inspections easier

Benefits: Large Buildings Approach 2

Benefits to Cities (primary audience)

- Improve systematic review documentation to help increase ease of inspections
- Provide technical support & share best practices across cities

Design/Project Team Participants

- Flag requirements that are not yet familiar
- Provide pre-plan review to reduce post-review revisions & labor costs
- Share documentation best practices that ease translation to on-site construction

• Energy Impact Analysis: Pilot

- 1. Approach 1: Small Buildings of Specific Types
 - Primary Participants Vs Control
 - Plan documentation
 - On-site verification
 - Extra info for energy savings simulations (e.g. efficiency level, quantity)
 - Secondary Changes in Design in Response to Program
- 2. Approach 2: Large/Complex Buildings
 - Primary Deficiencies at Plan Review
 - Secondary Field verification

Energy Impact: Full Program Considerations

- Determining Baseline for Comparison
 - Fixed or Variable
 - Level of Rigor
- Program Impact
 - When small sample
 - Field verification
 - Sampling Rate vs design documentation
- Free Rider/Free Driver Impacts

Evaluation of Program Design

- 1. Major Factors of Uptake & Conversion
 - Types of communication?
 - Project type, size, or team?
 - Changes over time as new code is more familiar?
- 2. Impact of Tools & Support
 - Which impacted energy savings the most?
 - What phases made the most impact?
- 3. Value of Services Provided
 - Appropriateness of incentive quantity & recipients
 - Likeliness to participate again
 - Value to the cities / code professionals

• Future Impact Opportunities

Utilities

- What parts of the pilot interest you most?
- How could these findings inform existing programs?
- Are there other questions that should be considered?
- Interest in creative program funding opportunities?

Cities

REVISE (Megan?)

Russ Landry | rlandry@mncee.org Megan Hoye | mhoye@mncee.org

