

MAKING A DIFFERENCE IN MINNESOTA: ENVIRONMENT + FOOD & AGRICULTURE + COMMUNITIES + FAMILIES + YOUTH

Of Building Science: From Control Layers to High Performance Enclosures

Energy Design Conference

February 24, 2016 Duluth, MN

Patrick H. Huelman

Cold Climate Housing Coordinator University of Minnesota Extension

OF BUILDING SCIENCE: CONTROL LAYERS FOR H-P ENCLOSURES

- In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,
- "This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying 1.5 hours of credit toward Building Officials and Residential Contractors continuing education requirements."
- For additional continuing education approvals, please see your credit tracking card.

🔼 University of Minnesota | extension

OF BUILDING SCIENCE: CONTROL LAYERS FOR H-P ENCLOSURES

- Part 1: Making a Case for High Performance
- Part 2: It is All About the Control Layers
- Part 3: Building a Better Wall

=> Using building science to guide us towards more robust, high-performance enclosures!

OVERARCHING THEMES

- We can and must do better!
 - Challenge ourselves towards better performance
- Existing technology can get us there, but ...
 - We need to reduce the focus on products.
 - We must embrace more robust systems.
 - We need improvement in design & execution.
- Together we must find more robust designs, technologies, and processes for the future.

Building America Strategy

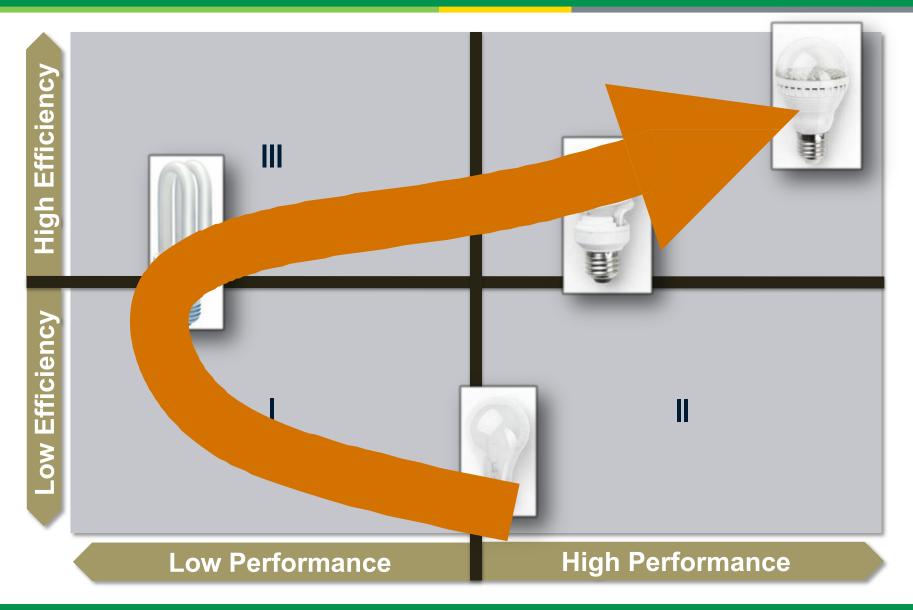
Energy Efficiency & Renewable Energy

Ultra-High Efficiency

- Enclosure
- Low-Load HVAC
- Components

High-Performance

- Affordable
- Comfort
- Health


+

- Durability
- Renewable Readiness
- Water Conservation
- Disaster Resistance

Efficiency + Performance Example

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

6 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market

Building America Strategy

Load

ิโล

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Goal: Homes so efficient, a small renewable energy system can offset all or most energy consumption

ے ا				energy concernption		
Therm	Thermal Load 1970 - 1980	Thermal Load 1980 - 1990	Thermal Load 1990 - 2000	Thermal Load 2000 - 2010	Thermal Load 2010 - 2020	Thermal Load 2020 - 2030
	Thermal	Thermal	Thermal	Thermal	Thermal Encl.	Thermal Encl.
Resulting Research Priorities	Enclosure Enclosure	Enclosure	Enclosure	Enclosure	Water Man.	Water Man.
						Ventilation/
					Ventilation/ IAQ	IAQ
				Water Man.	Low-Load	Low-Load HVAC
					HVAC	Eff. Comps./
				Eff. Comps/ MEL's	MEL's	
			Water Man.	Ventilation/ IAQ	Transaction Process	Transaction Process
			Ventilat'n/IAQ	Low-Load HVAC	Bldg. Integr. Renewables	Bldg. Integr. Renewables

7 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market

KEEPING OUR EYE ON THE BALL

- Is it possible that we are putting our "eggs into a pretty fragile basket"?
- Is it possible that our basket is getting increasingly fragile due to the nature of the industry, codes, materials, buyers, etc.?
- It appears that many designs, systems, materials, and operations are falling short of our performance expectations.

KEEPING OUR EYE ON THE BALL

- Is it possible that we have over-invested in things and under-invested in good design and proper execution?
- Are we not being realistic about the process?
 - Are we investing in risky designs, systems, and materials and hoping for perfect execution?
 - Are we counting on perfect homeowner operation and maintenance?

 $\ensuremath{\mathbb{C}}$ 2012 Regents of the University of Minnesota. All rights reserved.

A GROWING EPIDEMIC: NOTMYJOBITIS

- We must ensure our high-performance houses meet our expectations today and in the future?
- High-performance houses will push the envelope (mechanical systems, occupants, etc).
 - This will require more robust designs
 - It will demand systems with forgiveness/tolerance
 - We must have a more predictable delivery system
 - The owners/occupants will need to be in the loop

- What must we do to move away from the fragile edge and move towards more robust
 - Designs,
 - Systems,
 - Materials,
 - Methods, and
 - Operation?

- Robust: Don't think of it as a thing, but more of a conceptual way of evaluating new designs, systems, materials, execution, and operation.
- There are a number of ways to think of robust.
 - It is idiot proof, bullet proof, and unlikely to fail.
 - If it fails, it won't hurt anything else.
 - If it fails, there is a planned back-up or redundancy.
 - If it fails, it will be easy to repair or replace.

BUILDING SCIENCE REVIEW => HAM

Heat Transfer

Air Flows

Moisture Transport

HEAT: FUNDAMENTALS

- Heat always goes from hot (more energy) to cold (less energy)
- Modes of Heat Transfer
 - Conduction
 - Convection
 - Radiation

BASICS OF HEAT LOSS/GAIN

- Heat moves through the building enclosure in two distinct ways:
 - Transmission losses/gains
 - through the opaque ceilings, walls, floors
 - through windows and doors
 - Air exchange losses/gains
 - Infiltration & exfiltration
 - exhaust devices
 - combustion equipment
 - ventilation

University of Minnesota | extension

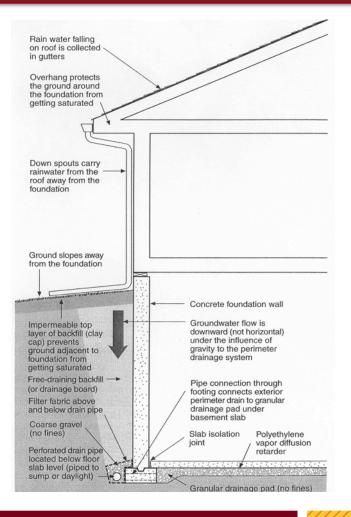
MOISTURE: THE BASICS

Moisture States

Solid

Liquid => Absorbed

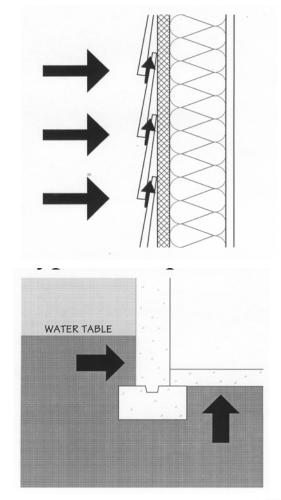
Vapor => Adsorbed



MOISTURE TRANSPORT: LIQUID

- Gravity (Bulk Water)
 - Above Grade
 - roof leaks
 - window/door leaks
 - wall penetrations
 - saturated materials
 - Below Grade
 - surface drainage
 - saturated soils

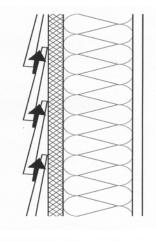
Courtesy of Building Science Corporation

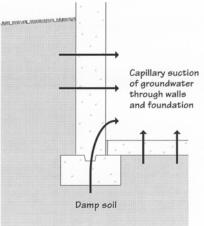


University of Minnesota | Extension

MOISTURE TRANSPORT: LIQUID

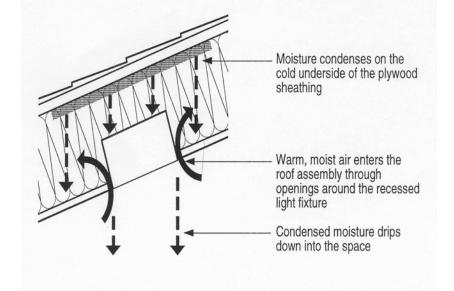
- Pressure Driven Flow
 - Above grade
 - wind-driven rain
 - Below grade
 - rising water table





MOISTURE TRANSPORT: LIQUID

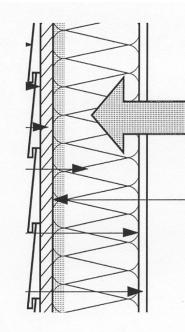
- Capillary Action
 - Above grade
 - seams/joints
 - flashing
 - Below grade
 - soils
 - footing/foundation
 - slab



MOISTURE TRANSPORT: VAPOR

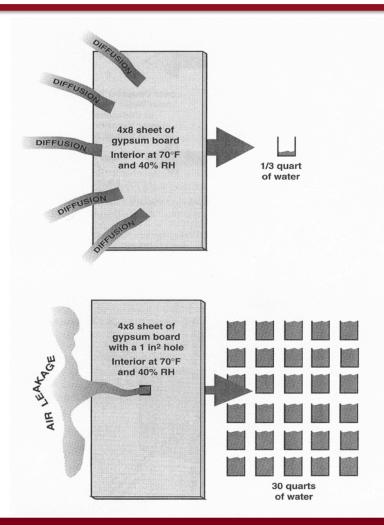
Air Flow

- Above grade
 - interior/exterior moisture
 - air barrier integrity
 - indoor-outdoor pressures
- Below Grade
 - interior & soil moisture
 - air barrier integrity
 - basement-outdoor pressures



MOISTURE TRANSPORT: VAPOR

- Diffusion
 - Above grade
 - vapor pressure gradient
 - outward in heating
 - inward in cooling
 - permeability
 - Below grade
 - vapor pressure gradient
 - lower wall and slab is usually inward
 - upper wall is similar to above grade
 - permeability



Warm, moist air moves from the interior toward the exterior in a heating climate

The interior face of the sheathing is usually the first condensing surface

MOISTURE TRANSPORT: VAPOR

Courtesy of Building Science Corporation

MOISTURE CONTROL: GENERAL

- Over some critical period
 - drying must exceed wetting
 - material storage provides the buffer
- Moisture storage is critical
 - Because a perfect envelope is not realistic, wetting will occur. Ample storage must be provided until drying can be completed.
- But remember, water stored (adsorbed or absorbed) must leave as a vapor!

University of Minnesota | extension

 $\ensuremath{\mathbb{C}}$ 2012 Regents of the University of Minnesota. All rights reserved.

AIRFLOW: THE BASICS

Pathways

- Unintentional leaks and holes
- Intentional windows, ports, & ducts
- Pressures
 - Natural
 - wind
 - stack
 - Mechanical
 - combustion venting
 - exhaust fans/devices
 - supply fans/devices
 - forced air systems

University of Minnesota | extension

BUILDING SCIENCE REVIEW

- Heat Flows
 - Transmission losses/gains
 - Air exchange losses/gains
 - Solar gains
- Air Flows
 - Paths
 - Pressures
- Moisture Flows
 - Liquid
 - gravity
 - capillarity
 - Vapor
 - air transport
 - diffusion

BUILDING SCIENCE REVIEW

Key Building Science Principles

- Heat goes from _____ to ____.
 Water vapor goes from _____ to ____.
 Water vapor goes from _____ to ____.
 Air in ______ air out (and vice versa).
 Air must have a _____ and a _____ to flow.
 - the rain (and the soil)
 - Most of the action is at _____ and _____.
 - Gas concentration (pollutants, water vapor, etc.) is a function of and ______.

In the end -- ____, ____, and _____ flows will drive the performance of the system!

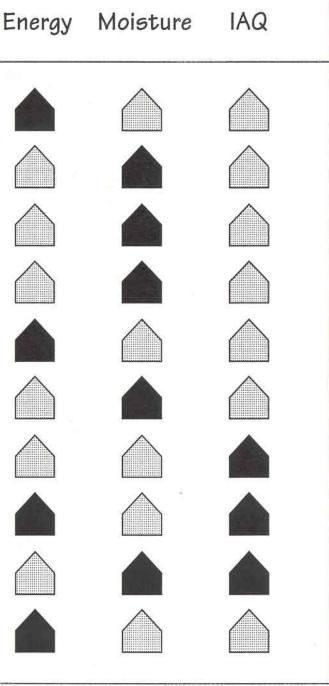
University of Minnesota | extension

- A call for high-performance homes!
- But it will demand a new approach. We must ...
 - design and engineer (not just build) our homes.
 - build forgiveness/tolerance into all systems.
 - build redundancy into critical materials.
 - or make it easy to repair and/or replace key components
 - develop a more predictable delivery system.
 - provide continuous feedback to the occupant.

FOCUS: HIGH PERFORMANCE ENCLOSURES

- Four Critical Control Layers
 - Water
 - Air
 - Thermal
 - Vapor

Essential for all enclosure elements!


HIGH PERFORMANCE DEJA VU

- The "Ten Key Components for a Cold Climate House" (1988) that will ensure ...
 - Energy efficiency
 - Moisture control & durability
 - Good indoor air quality
- A formula for …
 - How to have your cake and eat it too!!!

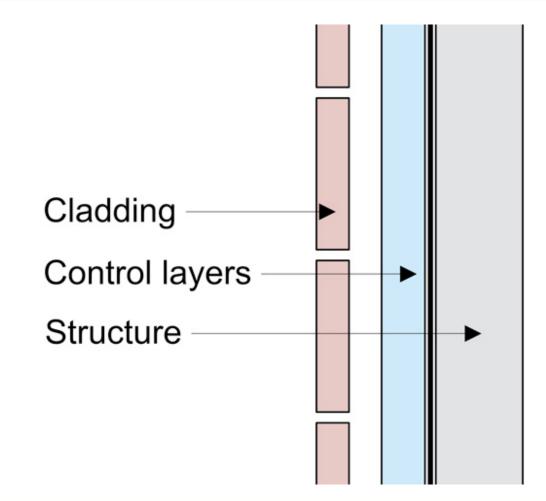
Components The Ten Key Components 1. Full coverage optimal thermal insulation 2. Continuous warm-side air barrier

- 3. Full-coverage warm-side vapor retarder
- 4. Continuous exterior-side weather barrier
- 5. Energy efficient, condensation resistant windows
- 6. Effective ground moisture / soil gas control
- 7. Low toxicity materials, finishes, and furnishings
- 8. Safe, efficient space heating and cooling
- 9. Managed mechanical ventilation
- 10. Efficient and safe appliances and lighting

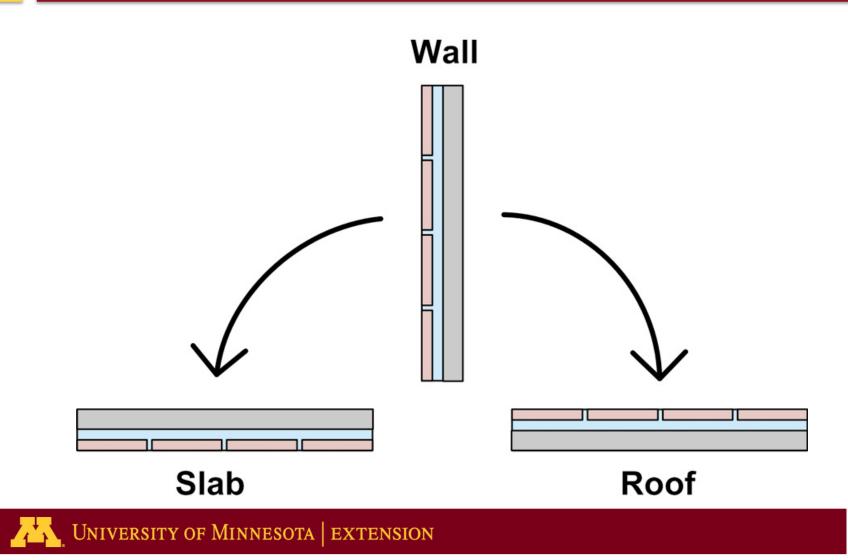
FOCUS: HIGH PERFORMANCE ENCLOSURES

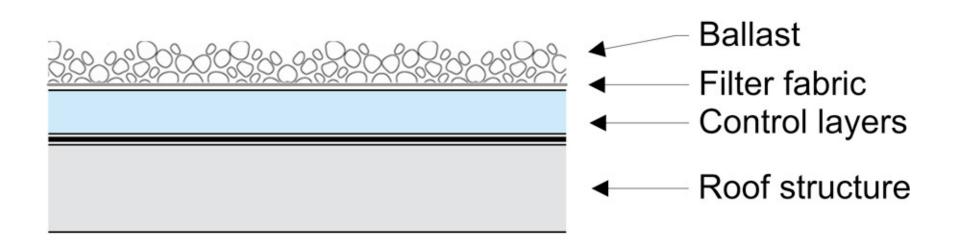
- The "Perfect" Approach
 - Walls
 - Roof
 - Slab
 - Foundation
- Move the structure to the inside and the control layers to the outside
 - It simply works and works everywhere!!!

University of Minnesota | extension

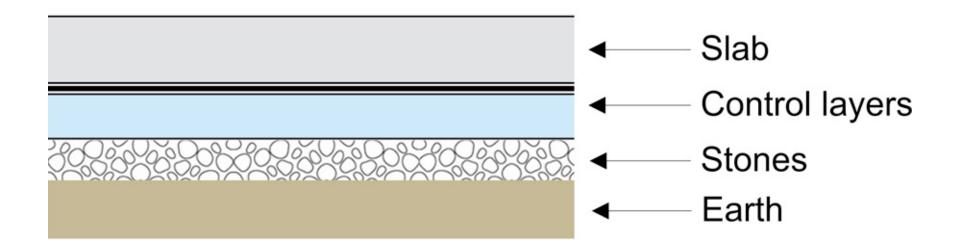

MUST HAVE RESOURCES FROM BSC

- BSI-001: The Perfect Wall
 - Joe Lstiburek, 2010
- BSI-090: Joseph Haydn Does the Perfect Wall
 Joe Lstiburek, 2015
- Getting Enclosures Right in ZERH
 - Joe Lsitburek, 2016
 - http://energy.gov/eere/buildings/doe-zero-energy-readyhome-resources

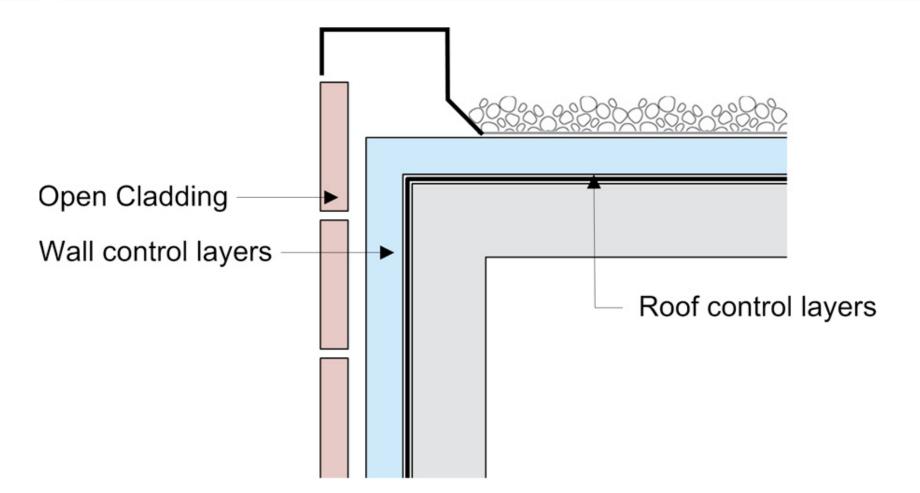

THE PERFECT WALL


University of Minnesota | Extension

WORKS FOR ROOF & SLAB, TOO!


THE PERFECT ROOF

University of Minnesota | Extension


THE PERFECT SLAB

PERFECT CONNECTIONS

THE 4 CONTROL LAYERS

- Every enclosure element must have four control layers!
- In rank order, they are:
 - Thermal control (???)
 - Water control
 - Air control
 - Vapor control

THERMAL CONTROL LAYER(S)

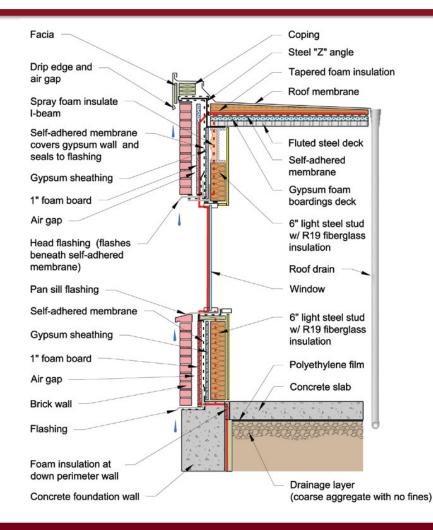
General Overview

- The intent is to slow the transmission of heat energy going from warm to cold.
 - Driver is the temperature difference
 - Primarily set by indoor and outdoor conditions

This is the easy one!

- How much?
- Where?
- What type?

University of Minnesota | extension


THERMAL CONTROL LAYER(S)

Insulation	Code	ZERH	NZE*
 Ceiling (flat) 	50	50	60
– Walls	20	25	40
– Fenestration	3	4	5
– Floor (frame)	30	40	50
– Foundation	15(10+)	15	20
– Slab	0	0	10

* From "Zeroing In" by Joseph Lstiburek

University of Minnesota | extension

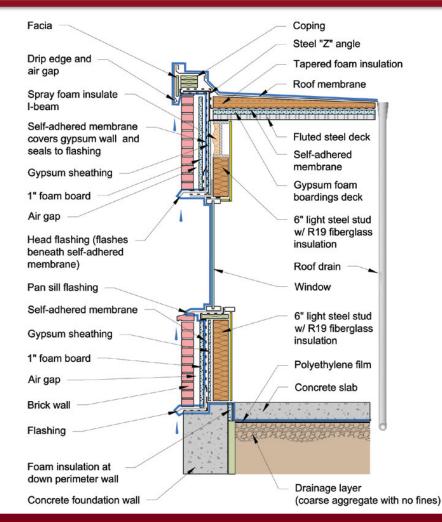
PEN TEST: RED LINE FOR INSULATION

WATER CONTROL LAYER(S)

General Overview

- The intent is to keep water from reaching any moisture susceptible layers.
 - Primary drivers are gravity, wind, capillarity
 - You can (should) take steps to reduce the drivers
- This is absolutely critical,
 - especially as we remove drying potential with increased insulation, reduced air flow, and multiple vapor retarders!

University of Minnesota | extension


WATER CONTROL LAYER(S)

- Theoretical Framework: 3 D's
 - Deflect
 - Drain
 - Dry

PEN TEST: BLUE LINE FOR WATER

