

conference & expo

Residential Passive House Retrofit (EnerPHit) The MinnePHit House

Case Study about the first cold-climate EnerPHit project in the World Tim Eian, Dipl.-Ing., Certified Passive House Planner & Consultant In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 hours** of credit toward **Building Officials and Residential Contractors** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

Learning Objectives

- The Passive House building energy standards
- Residential Passive House retrofit design
- Strategies, materials and systems
- Challenges & Opportunities
- Certification

Introduction

Quality-Approved Energy Retrofit with Passive House Components Dr. Wolfgang Feist

The MinnePHit House Minneapolis, MN

ANNIA MARTIN

Minneapolis + EnerPHit = MinnePHit

The **Passive House Standard**

Passive House in 90 Seconds

Passivhaus - Passive House

"A rigorous, voluntary building energy standard focusing on highest energy efficiency and quality of life at low operating cost."

Global Standard

Think globally, build locally.

Third-Party Certified

intep

Certificate

The Passive House Institute awards the seal "Certified Passive House" to the following building Dath Invest Pausive House #1, 745 Date St. Month, La Creates We Sater, USA

Client: Wesstein Technical College and 7th Bit Borth, Le Crosse, Wit Seb02, USA

P____

UNA, MIN STATE, USA of Earl Are ME, Monrain 905 Thed Ave Mr. Minnes Die, Mill SSATE, USA

failined by the Passive Ho.

of to meet Paysive House criterie as defin-regionerization, this building will have the ion The balance

- demand or beating load will be tended to 15 kWh per m⁴ of living area and year or a heating load of 10 Wim When isotoor temptrolums are high, themail contoit can be encoded with one environ energy demand for cooling and deturned building to the togethere includents.
- A highly simple building envelope, which elementes draughts an
- A highly airight faulding wankings, which describes disruption and research The air change rate brough the envelope at a 50 Pascal pressure officience at 150 9972, is less than 0.6 air changes per hour with respect to the building
- A controlled ve. consumption, ensuring excess
- A total primary energy demand for realing, demand and yea during memal use of less than 120 kWh per m^a of living area and yea

This certificate is to be used only in combination with the a the exact characteristics of the building. and can be h Houses other high comfort throughout the nestroproceing the supply air. Even in traves of cold success is evenly warm on the traide and the internal surface tresh air di excellent quality Energy i infort in a Passive House are very low. Thanks to the Passive House solve House individual in a macrone House are very low. (Hanks to this, Parceve Research and Julium risks in emergy prices. Moreover, this climate impact of Passers In-ies, thereby resulting in the emission of comparatively low levels of carbo-

12.10.2014 Teld

Certificate-ID. 9589_PHI_PH_20141017_AM

Certified

Tool

The Path to Ultimate Sustainability

Global Climate Specificity

Illustration © Passive House Institute

Climate-Specific Requirements

	Opaque envelope ¹ against				Windows (including exterior doors)					Ventilation	
Climate zone according to PHPP	ground			Overall ⁴			Glazing ⁵ Solar load ⁶		ventilation		
	Insu- lation	Exterior insulation	Interior in- sulation ²	Exterior paint ³	м	ax. he	at		Max. specific	Min.	Min. hu-
	Max. heat transfer coefficient (U-value)			Cool colours	transfer coefficient (U _{D/W,installed})		er ent _{Illed})	Solar heat gain coefficient (g-value)	solar load during cooling period	reco- very rate ⁷	midity re- covery rate ⁸
	[W/(m²K)]			-	[W/(m²K)]		K)]	-	[kWh/m²a] %		%
					C						
Arctic		0.09	0.25	-	0.45	0.50	0.60	U _g - g*0.7 ≤ 0		80%	-
Cold	Deter- mined in PHPP from project	0.12	0.30	-	0.65	0.70	0.80	U _g - g*1.0 ≤ 0		80%	-
Cool- temperate		0.15	0.35	-	0.85	1.00	1.10	U _g - g*1.6 ≤ 0		75%	-
Warm- temperate		0.30	0.50	-	1.05	1.10	1.20	U _g - g*2.8 ≤ -1		75%	-
Warm	heating	0.50	0.75	-	1.25	1.30	1.40	-	100	-	
Hot	and cooling degree days against ground.	0.50	0.75	Yes	1.25	1.30	1.40	-		-	60 % (humid climate)
Very hot		0.25	0.45	Yes	1.05	1.10	1.20	-		-	60 % (humid climate)

Energy Modeling

PHIUS+

United States

Passive House Institute U.S., Chicago, Il Local raters and tie-in with other certifications New sovereign standard for the U.S.

U.S. Climate Specificity

Energy & Hygrothermal Modeling

WUFI[®] Passive

Basic Concept

Conservation first

Minimize losses

Maximize (free) gains

Active vs. Passive

Active: 25-125 kBtu/(sf yr)

85 - 450 kWh/(m² a), typically found in the U.S.

intep

Passive: 4.75 kBtu/(sf yr)

15kWh/(m² a), maximum target

Energy Footprint

Metrics

Energy per Square Foot and Year

Gas mileage for buildings.

Space Conditioning Energy Targets

$\leq 25 kWh/(m^2 a)$

Total energy used to heat or cool a building.

Source Energy Targets

$\leq 120 \text{ kWh/(m^2 a)} + ((QH - 15 \text{ kWh/(m^2 a)}) * 1.2)$

Total energy used to heat or cool a building.

Heating Load Target (suggested)

Heating energy can be supplied through ventilation system.

Airtightness Targets

Measured with a blower door in the field.

Component Targets

- Maximum U-values
- Minimum R-values
- SHGC requirements
- Minimum heat-recovery rates

EnerPHit offers a Component Track.

Component Targets

Climate zone	Hygiene ¹	Comfort ²					
	Min. temperature factor	Max. thermal transfer coefficient					
	f _{Rsi=0.25 m²K/W}	U-value					
	[]	[W/(m²K)]					
Arctic	0.80	0.45	0.50	0.60	0.35		
Cold	0.75	0.65	0.70	0.80	0.50		
Cool-temperate	0.70	0.85	1.00	1.10	0.65		
Warm-temperate	0.60	1.10	1.15	1.25	0.85		
Warm	0.55	-	1.30	1.40	-		
Hot	-	-	1.30	1.40	-		
Very hot	-	-	1.10	1.20	-		

Predictable Outcome & Measurable Results

Passive House Planning Package - PHPP

Key Benefits

Indoor Environmental Quality

Ecology and Resource Efficiency

The MinnePHit Project

Where are we?

