

The Result

Photos: Spaces Magazine

Photos: Spaces Magazine

Certified Performance

Airtightness

0.65 ACH₅₀ [195 CFM₅₀]

Passive House Performance

Component Approach

Minimum R-values throughout

Heating Load

20 W/m² [6.3 Btu/h/ft²]

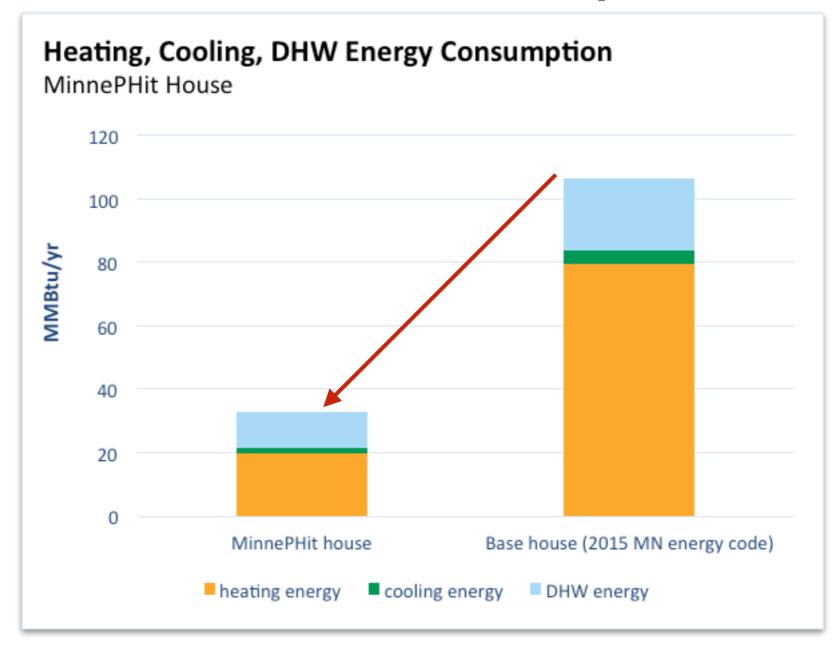
4.1 kW [14 kBtu/h]

Cooling Load

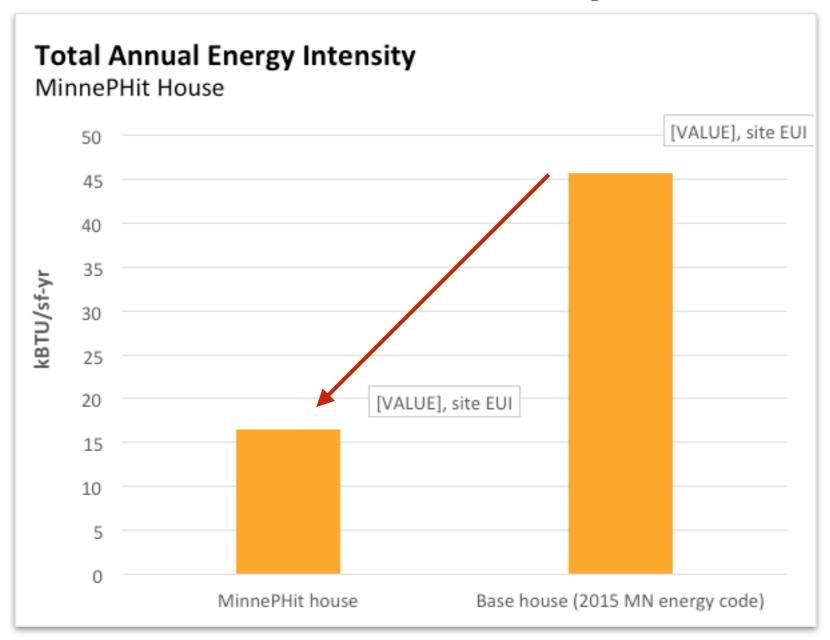
2.6 kW

[0.74 tons, 8.8 kBtu/h]

Airtightness 0.65 ACH₅₀ [196 CFM₅₀]



Specific Primary Energy Demand 112 kWh/m² a [35.5 kBTU/ft² a]


Passive House Comparison

Heat loss is dramatically reduced by more than 66% over current new construction in Minnesota.

Passive House Comparison

Annual energy intensity was calculated at 16.5 kBTU/(sf yr).

This is a savings of 64% compared to a similarly-sized house meeting MN 2015 residential energy code—modeled at 45.7 kBTU/(sf yr).

Passive House Certification

Certificate

Certificate ID: 5583_PHI_EP-Pilot_20130110_STh

Passive House Institute Dr. Wolfgang Feist Rheinstraße 44/46 64283 Darmstadt, Germany

The Passive House Institute hereby awards the EnerPHit Pilot Project certificate to the following building:

EnerPHit Pilot Project in Minneapolis, 5605 Bloomington Avenue S., MN 55417 Minneapolis, USA

Client:	Paul&Desiree Brazelton 5605 Bloomington Avenue S., MN 55417 Minneapolis, USA
Architecture:	Tim Eian - TE Studio, Ltd. 212 2nd St.SE #222, MN 55414 Minneapolis, USA
Building Services:	TE Studio, Zehnder USA, Paul Brazelton

This building was designed to meet the Passive House component energy retrofit criteria as defined by the Passive House Institute Darmstadt. Given appropriate on-site implementation, this building has the following characteristics:

Building characteristics:	Achieved Required		
Annual specific space heating demand	27 kWh/(m²a)	= 25 kWh/(m²a)	_1
Annual specific primary energy demand ² for heating, DHW, ventilation and all other electric appliances for standard use	120 kWh/(m²a)	= 134 kWh/(m²a)	V
Airtightness of building envelope n ₅₀ as per test result	0.7 h ⁻¹	= 1.0 h ⁻¹	V
Mean value of individual building component thermal	protection:		
Exterior insulation to ambient Thermal transmittance (U-value)	0.11 W/(m²K)		V
Exterior insulation to ground Thermal transmittance (U-value)	0.17 W/(m²K)		-
Interior insulation to ground Thermal transmittance (U-value)	0.17 W/(m²K)		V
Thermal bridges Δυ Building envelope (window installation excluded)	0.01 W/(m²K)	No limiting value	
Windows Thermal transmittance Uw/nstalled	0.77 W/(m²K)	nie zesta	V2
Exterior doors Thermal transmittance Uw.installed	0.79 W/(m²K)		V
Ventilation unit Effective efficiency of heat recovery	89 %		V

¹Limiting value is not relevant. ²Improved windows (U_{w, installed} = 0.65 W/(m²K)) are recommended in order to meet comfort criteria in winter conditions a optimal thermal comfort directly near window areas cannot currently be guaranteed. Thick curtains or use of floor heating is thus recommended.

Certification criteria met?
Selection of the evalulation method
Space heating demand
Component quality

issue

Darmstadt, 10.01.2013

Molfang Fest Dr. Wolfgang Fe

Mission Accomplished!

- Structure √
- Weather Barrier √
- Insulation √
- Airtightness √
- Moisture Management √
- Ventilation/ Air Quality √
- Comfort √
- Daylight √
- Durability (50-100 years) √
- Design √
- Lifecycle Cost √
- Environmental Impact √
- Deconstructability √

HOLISTIC DESIGN

Thank you!

testudio.com

Resources

passipedia.org

passivehouse-international.org

phius.org

phaus.org

phamsp.org