Welcome

High Performance Mechanicals for Houses That Work

Energy Design Conference - Duluth, MN

February 21st, 2018

Local Sponsor

EEBA National Education Partners

CEU's

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 hours** of credit toward **Building Officials and Residential Contractors code /1 hour energy** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

I.5 EA/PER PART

- EEBA High Performance Mechanicals Part I
- EEBA High Performance Mechanicals Part 2
- EEBA High Performance Mechanicals Part 3
- EEBA High Performance Mechanicals Part 4

Andrew Oding EEBA Certified Trainers

www.constructioninstruction.com

Who's Here?

Topics for Discussion

- What's different in high performance homes?
- The building science connection to mechanical systems
- The right decisions in the right order for all systems
 - The right size
 - Integrated design
 - Equipment alternatives
 - Getting installation right
 - Commissioning
 - Expectation education

How we build has changed How we live in homes has changed

The original 800-1200 sq.ft starter home

The new 800-1200 sq.ft starter home

New Mechanical Priorities

Annual Consumption

Tighter Buildings Larger Exhausts

Larger windows Opened less

NEW CODES, NEW ZERH, NEW DESIGNS...

Irrational Enclosure Design = Irrational Mechanical

It's about finding the economical and sustainable balance between Passive vs Active systems (Goldilocks scenario)

Lower sensible loads ... higher % latent loads

More lights, appliances, hot water

Advanced systems ... higher expectations

Codes are Changing - Continual Improvement

PAST, PRESENT AND FUTURE

NOTE: Renewable Energy Becomes More Cost Effective

Energy Efficiency Scale

Every 1 point reduction is equal to a 1% reduction in energy use

Code adoption as of March, 2017

30 years ago....

IECC 2015....

SMALLER TOTAL CIRCLE LOAD PROFILE HAS CHANGED

NET ZERO / ZERH....

- Heating 13%
- Hot Water 12.5%
- Occupant /Baseload 67.5%
- Air Conditioning 3%
- HRV /Fans 4%

Are we ready for the changes?

Be Aware...

- Energy Efficiency ≠ Comfort
- Builders typically have more comfort complaints than high bill complaints
- If you can't provide comfort, energy efficiency could be set back 20 years
- Need to remember comfort fundamentals

Let's Start with Defining Comfort

- Air temperature
- Humidity
- Air speed drafts
- Surrounding surface temperatures
- Gender, age, activities of occupants
- Metabolic rate & clothing

ANSI/ASHRAE Standard 55-2010 (Supersedes ANSI/ASHRAE Standard 55-2004) Includes ANSI/ASHRAE addenda listed in Appendix I

Thermal Environmental Conditions for Human Occupancy

See Appendix I for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site (www.ashrae.org) or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from the ASHRAE Web site (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1791 Tullie Circle NE, Atlanta, GA 30329 www.ashrae.org

ISSN 1041-2336

Comfort – Finding the sweet spot

Figure 2: The new Graphic Comfort Zone Method, Figure 5.2.1.1 in Standard 55-2010 (IP version shown).

THERMAL COMFORT DEFINED: ASHRAE 55(40 years old)

- 1. Air Temperature(Ambient)
- 2. Surrounding Surface Temperature(MRT)
- 3. Humidity

PERSONAL FACTORS:

- 1. Air movement-Drafts(Air Speed)
- Occupant Activity AND Sensitivity(Metabolic Rate and Clothing)

ASHRAE 55...."Mean Radiant Temperature"

http://comfort.cbe.berkeley.edu/

The Temperatures of the surrounding walls ,floors and windows impacts comfort MORE than air temperature(Thermostat).

- How does the body lose (transfer) heat?
- 15% humidity/perspiration
- 35% convection/air movement
- 50% radiation heat exchange.

Operative Temperature

Operative temperature:

- The average of the **mean radiant** and ambient air temperatures, weighted by their respective heat transfer coefficients.
- Thermostats respond to air temperature
- Human thermal comfort responds to operative temperature

Can we meet the expectations of our customers?

Residential Single-Zone and Multi-Zone Systems

Minimum / Maximum Recommended Values for Comfort and Safety

Comfort Item	Heating Season	Cooling Season
Thermostat setpoint (design)	70°F	75°F
Relative humidity (RH) ¹	30% RH maximum (20 – 30% RH is desirable)	55% RH maximum (25 – 50% RH is desirable)
Dry-bulb temperature at the thermostat	Setpoint temperature ±2°F	Setpoint temperature ±3°F (single-zone) Setpoint temperature ±2°F (multi-zone)
Dry-bulb temperature in any conditioned room	Setpoint temperature ±2°F	Setpoint temperature ±3°F (single-zone) Setpoint temperature ±2°F (multi-zone)
Room -to-room temperature differences (i.e., same level)	4°F maximum	6°F maximum (single-zone) 4°F maximum (multi-zone)
Floor-to-floor temperature differences (i.e., different levels)	4°F maximum	6°F maximum (single-zone) 4°F maximum (multi-zone)
Floor temperature (slab floors or floors over unconditioned space)	65°F minimum at 4" above the floor for 70°F thermostat setting [not applicable near outside walls]	
Air filtration – MINIMUM EFFECTIVENESS ²	MERV ³ rating of 4 – 6 [Standard disposable media filter]	MERV ³ rating of 4 – 6 [Standard disposable media filter]
Air filtration – BETTER EFFECTIVENESS ²	MERV ³ rating of 8 – 11 [1-2" residential pleated filter]	MERV ³ rating of 8 – 11 [1-2" residential pleated filter]
Ventilation (outdoor air introduced into the occupied space)	0.35 air changes per hour (ACH) [for any infiltration-ventilation combination]	0.35 air changes per hour (ACH) [for any infiltration-ventilation combination]
Air circulation within room 4	Size and location of supply outlets selected for optimum heating performance / low resistance return path required for every room	Size and location of supply outlets selected for optimum cooling performance / low resistance return path required for every room

ACCA Comfort Guidelines

Comfort – A starting point

Parameter	Setting	Range
Temperature		
Summer	75 ⁰ F	+/- 3 ⁰ F
Winter	72 ⁰ F	+/- 3 ⁰ F
Humidity		
Summer	50%	+/- 5%
Winter	35%	+/- 5%
Foot Comfort	63 ⁰ F	+/- 3 ⁰ F

Heating & Cooling Systems

Fuel choices

- Electric
- Gas
- Oil
- Wood
- Solar
- Combinations

Distribution choices

- Central Forced air
- Radiant
 - In-floor
 - Baseboard
- Ductless
- Space heaters

Get heating Cooling capacity right

MANUAL **Residential Load** Calculati Hank Rutkowski, P.E. FIGH VERSION TWO (ANSI

ACCA Sizing Standards

Air Conditioning Contractors of America

Heat Flow Formulas

Conduction heat flow (through walls, ceilings, floors)

= (Surface Area x Temp. Diff.) / R-value

Radiant flow (through glass)

= Surface area x Solar incidence x Solar Heat Gain Coefficient

Heat flow by air (via air leakage or ventilation) - Sensible

= Volume of air (CFM) x Temp. Diff. x 1.1
HEATING – Get the Size Right

 Do Room-by-Room heat loss & gain calculation

Based on:

- Design Day Winter
- Conduction losses through enclosure
- Air leakage through enclosure
- Heat losses through ducts in unconditioned space

SECOND FLOOR PLAN

Madison, WI - design conditions

38

Condition	ASHRAE 99% / 1%
Winter, design dry bulb (F)	-9°F
Summer, design dry bulb (F)	90°F
Summer, design wet bulb (F)	74.4°F
Degree days-heating	7197
Degree days-cooling	608
Precipitation	31"
Solar incidence - South, July	100

Lets do a one room example

Conductive Heat Loss/ Gain

- 2 exposed walls
- One exposed ceiling
- One window

Radiant Heat Gain (Cooling)

- Solar gain through window
- + Internal loads
- + Air leakage & ventilation

Participants complete the example on your worksheet Assume 10' high ceilings Assume window SHGC = 0.3

HVAC Sizing

Component	Surface area	X	Temp. Diff.	/	R-value	= BTUs/Hr
Ceiling: Winter Summer	sq.ft.				R30	
Walls: Winter Summer	sq.ft.				R15	
Windows: Winter Summer	sq.ft.				R3	

HVAC Sizing

Component	Surface area	X	Temp. Diff.	/	R-value	= BTUs/Hr
Ceiling: Winter Summer	150 sq.ft.				R30	
Walls: Winter Summer	250 sq.ft.				R15	
Windows: Winter Summer	20 sq.ft.				R3	

HVAC Sizing

Component	Surface area	X	Temp. Diff.	/	R-value	= BTUs/Hr
Ceiling: Winter Summer	150 sq.ft.		60 20		R30	300 100
Walls: Winter Summer	250 sq.ft.		60 20		R15	1000 333
Windows: Winter Summer	20 sq.ft.		60 20		R3	400 133

Solar gain (South) = $20 \times 100 \times 0.3$ SHGC = 600 BTUs/hr

Solar gain (West) = $20 \times 160 \times 0.3$ SHGC = 960 BTUs/hr

Air leakage / ventilation heat loss = CFM x temp. difference x 1.1 = $60 \times 60 \times 1.1 = 3960 \text{ BTUs/hr}$

Definition - 1.08 is the product of the specific heat (0.24 BTU x Air Density x minutes in an hour (60)

Air leakage / ventilation heat loss btu/hr = CFM x temp. difference x 1.1 = $60 \times 50 \times 1.1 = 3300$ BTUs/hr

Definition - 1.08 is the product of the specific heat (0.24 BTU x Air Density x minutes in an hour (60)

Proper Manual J Calculations

- Numerous software packages exist
- All rely on proper data input and appropriate assumptions

Common Errors:

- Fudging design day conditions
- Using default values for air tightness, windows, insulation
- Using improper ventilation rates

Don't tolerate oversizing, Manual J compliant programs have safety factors built in already

Impact of Improper Sizing

- Short cycling
- Poor humidity control
- Poor temperature control
- Noise
- Extra cost for equipment & duct worl
- Possibly higher energy bills

	En		Project Inf	formation		
	Por:					
			Design Co	onditions		
Location: Richmond Intern Elevation: Lastude: Outdoor: Drybulb (*F) Wetbulb (*F) Wind speed (mp	national AP, VA, 164 ft 38*N Hea Ma	us 21 15.0	92 19 (M) 75 7.5	Indoor: Indoor temperature ("F) Design TD ("F) Relative humidity (%) Moisture difference (grlb) Infiltration: Method Construction quality Fireplaces	Heating 70 49 30 20.3 Simplified Tight 1 (Average)	Coolin 75 17 50 41.3
			Heat	ing		
Component	Buh/t ^a	Btuh	% of load	-		
Walls Glazing Doors Ceilings Floors Infitration Ducts Piping Humidification Ventilation Adjustments Total	39 1627 177 1.3 23 1.6	9120 6676 744 2194 3867 4094 2438 0 2959 0 32091	28.4 20.8 2.3 6.8 12.1 12.8 7.6 0 9.2 100.0		-	
			Cool	ling		
Component	Btuh/tt ^a	Btuh	% of load	12.0		
Walls Glazing Doors Ceilings Floors Infiltration Ducts Ventilation Internal gains Blower Adjustments Total	2.2 19.8 10.6 1.4 0.2	4998 8150 445 2359 566 2190 1040 2120 0 21868	22.9 37.3 2.0 10.8 0 2.6 10.0 4.8 9.7 0 100.0		F	

wrightsoft Right-Guiten Universal 2012 12.0.08 ROU0289

20

Page 1

Example Design Decisions

Parameter	Actual	Traditional
Design Temp (W) Design Temp (S)	-15 ⁰ F 91 ⁰ F	Its cold here: -22 ⁰ F Its getting hotter: 97 ⁰ F
Indoor Design (W) Indoor Design (S)	70 ⁰ F 75 ⁰ F	People are picky: 72 ⁰ F 72 ⁰ F
Orientation	North Front	Worst Case - East Front
Windows	From NFRC label U=0.28, SHGC=0.28 Overhangs used	Default U=0.41, SHGC=0.32 Overhangs not used
Air tightness	Actual 2.0 ACH50	Default 7.0 ACH50
Insulation	R50 ceilings R25 walls R 15 foundation	R44 ceilings R19 walls R 10 foundation
Ventilation	ERV - 75 CFM	Exhaust fans - 75 CFM

Project Summary Entire House Authority Air Designs, LLC.

V505 Job: Date: Feb 09, 2015 By: Joe Colburn Plan: Beazer Homes

°F °F °F

50 % 55 gr/lb

22909 Btuh

n 0.97

25545 Btuh

3518 Btuh

525 Btuh

4042 Btuh 29587 Btuh

2.7 ton

0 Btuh

3398 Btuh

0 Btuh

0 Btuh

6608 W. 95th Place, Westminster, CO 80021-6422 Phone. (720) 354-8105 Email: Joe@AuthorityAir.com Web: www.AuthorityAir.com

Project Information

For: Justin Wilson, Construction Instruction 3259 Spruce St., Denver, CO 80238 Phone: (719) 337-4749 Web: www.ConstructionInstruction.com Email: Justin@ConstructionInstruction.com

Notes:

Design Information

Charleston Intl AP, SC, US Weather:

Moisture difference

Central vent (0 cfm)

Use manufacturer's data

Rate/swing multiplier Equipment sensible load

Central vent (0 cfm)

Equipment latent load

Equipment total load

Req. total capacity at 0.80 SHR

Structure

Ducts

Blower

Structure

Ducts

Winter Design Conditions

Summer Design Conditions

Sensible Cooling Equipment Load Sizing

Latent Cooling Equipment Load Sizing

Cooling Equipment Summary

Outside db Inside db Design TD

30 °F Ou	tside db
70 °F Ins	ide db
40 °F De	sign TD
Da	ily range
Re	lative humidity

Heating Summary

Structure	23079	Btuh
Ducts	2899	Btuh
Central vent (0 cfm)	0	Btuh
Humidification	0	Btuh
Piping	0	Btuh
Equipment load	25977	Btuh

Infiltration

Method Construction quality Fireplaces		Simplified Tight 1 (Tight)
Area (ft²)	Heating 2615	Cooling 2615
Volume (ft ^a)	23534	23534
Air changes/hour	0.15	0.08
Equiv. AVF (cfm)	88	72

Heating Equipment Summary

Make	Goodman Mfg.			Make	Goodman	Mfg.		
Trade	GMVC9 Series			Trade	GSX 13 S	eries		
Model	GMVC950704CX			Cond	GSX1603	61F		
AHRI ref	2002232			Coil	CAPF364	2C6D		
				AHRI ref	5986876			
Efficiency		96.17	AFUE	Efficiency		12.0 EER,	14.5 SEER	
Heating inpu	,t	69000	Btuh	Sensible co	oling		27200	Btuh
Heating outp	out	67000	Btuh	Latent cooli	ng		6800	Btuh
Temperature	rise	48	°F	Total cooling	3		34000	Btuh
Actual air flo	w	1275	cfm	Actual air fk	bw .		1275	cfm
Air flow fact	or	0.049	cfm/Btuh	Air flow fact	or		0.048	cfm/Btuh
Static press	ure	0.80	in H2O	Static press	ure		0.80	in H2O
Space therm	nostat			Load sensib	le heat ratio	>	0.87	

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

An Accurate Manual J

Heating Loads- HP Home Versus Standard

Cooling Loads- HP Home Versus Standard

The most 2 important numbers

- **SHGC** indicates how much incident solar radiation is admitted through a window as heat gain. The higher the number, the higher the solar gain.
- <u>Ufactor</u> describes the rate of heat transfer (i.e. how well the window insulates). The lower U factor, the better the window or door insulates.
- **SHGC and U factor** should be chosen carefully to optimize window performance in different climates.

NOTE : SHGC affects 50%+ of most Heat Load calculations(Tonnage)

WHY DUCT SIZING IS INCREASINGLY DRIVEN BY COOLING LOADS...EVEN IN THE NORTH!

- Fastest growing peak load
- Most costly comfort investment in any home
- Trickle down effect: HIGH SHGC
 WINDOWS = Increasing cooling loads
 = larger Duct sizing and air
 handler(furnace blower motor)

Single biggest factor in cooling loads: WINDOWS!(SHGC)

Windows Solar Gain(SHGC) and Air Conditioning

Window Case Study

- Standard Clear Double Glazed
- SHGC = .68
- 4.0 Ton AC Unit

- Double Glazed Low-e, Low SHGC
- SHGC = .32
- 2.5 Ton AC Unit....1.5 Ton reduction!

SHGC AND COOLING LOADS

Amount of Glass in New Homes : More or Less? 2000 or before: 8 to 10%... 2010 to 2016: 12% to 17%.... **2016 New product showing:** 17% to 25%+

HOW MUCH HEAT/COOLING FOR A LOW LOAD ZERH? (1800 SFT)

ΗΟΜΕ ΤΥΡΕ	Load
EXISTING HOME	70,000 Heat 36,000 Cool
2012-2015 IECC BUILT HOME	36,000 24,000
ZERH	26,000 18,500

Provide your Contractor with Good Information

- Insulation levels
 - Wall and attic insulation levels
 - Foundation insulation
- Window data use NFRC ratings
 - Solar heat gain coefficients
 - U values
- House Air leakage (this is often the single biggest variable)
 - Provide blower door test values

Approved Software Guides Better Inputs

000

😮 Right-Suite® Universal 2017 – [Project1.rup: C:\Program Files\Wrightsoft HVAC\RSU.NavBar\WelcometoWSFRSU.htm]

🗱 File Edit View Show Drawing Proposal Options Window Library Help

1	File
2	Project

```
3 Design Conditions
```

Info

5 System Type

6 Distribution

(7) Reports

(8) Finished

Draw

. Multizone tree

Zone information

Load meter

Equipment

Print preview

Project Wizard

Building Description

The materials used in construction of the property have a significant effect on the cooling and heating loads. Entering correct values will help the software determine the correct load factors and thus produce accurate equipment sizing and running cost estimates.

Please select appropriate building materials for the following

Building type	2 level above grade- walk out	-	
Building materials	Basement - Finsished Insulated	-	
Load preferences	Conditioned Space	-	
Tightness	Tight		
Number of above grade stories	2		•
Number of fireplaces	1		
Fireplace quality	Tight		•

To select a pre-defined condition use the pulldown and select from the available choices.

Pressing the [...] button will display the existing conditions and allow selection or creation of new, user created, choices.

<Back Next>

Suite¹⁰⁰¹⁰¹¹⁰¹⁰¹⁰¹⁰⁰ RSAL

htsoft

Entire House/O zones O zones O rooms MJ8

Help

Cancel

04/20/16 02:19PM

- BX

Done

Duct

Approved Software Guides Better Inputs

00	🔮 Right-Suite® Universal 2017 - [Test House EEBA HVAC, 4-20-16: Right-Draw®]		
File Edit View Show Drawing Propo	oosal <u>O</u> ptions <u>W</u> indow Library <u>H</u> elp		-Ø×
Const	tructions for Test House EEBA HVAC, 4-20-16 <none></none>	\mathbf{X}	
Library bu Attic ceili	t from library (none)		
iect wizard Bg floor, Description b Custor tizone tree imment p b Custor custor	iption 2 glazing, clr outr, air gas, vnl frm mat, clr innr, 1/4" gap, 1/4" thk Custom values Radio buttons Custom values om Glazing type Clear N mber of glazings (not in cluding storm window) NFRC rated Has storm window	Results SHGC w/o storm = 0.56 U-val w/o storm = 0.570 MJ8 Code = 2 glazing, clr outr, air MJ8 SHGC w/o storm = 0.56 MJ8 U-val w/o storm = 0.570	8 ■ ♥ ℝ Level 3 ■ ♥ ℝ Level 2 ■ ♥ ℝ Level 2 ■ ♥ ℝ Level 1 ■ ♥ ℝ Level 1 ■ ♥ ℝ Building
Design	Without storm window U-value 0.570 0.570 Btuh/ft²-°F SHGC 0.56 0.56	Picture Not Available	One sheet at a time
elp, press F1	Contine House/O zones O zones O rooms MJ8	04/20/16 02:21PM 0'×	0' 150'0" × 150'0" 🦽

For:

Component Constructions Entire House Authority Air Designs, LLC. Job: V505 Date: Feb 09, 2015 By: Joe Colburn Plan: Beazer Homes

6608 W. 95th Place, Westminster, CO 80021-6422 Phone: (720) 354-8105 Email: Joe@AuthorityAir.com Web: www.AuthorityAir.com

Project Information

Justin Wilson, Construction Instruction 3259 Spruce St., Denver, CO 80238 Phone: (719) 337-4749 Web: www.ConstructionInstruction.com Email: Justin@ConstructionInstruction.com

You can check the numbers against the detailed Heat Loss / Gain Report

Check them against your HERs raters reports too

Design Conditions					
Location: Charleston Intl AP, SC, U Elevation: 49 ft Latitude: 33°N Outdoor:	JS Heating	Cooling	Indoor: Indoor temperature ("F) Design TD ("F) Relative humidity (%) Moisture difference (gr/lb)	Heating 70 40 50 35.4	Cooling 75 17 50 55.5
Dry bulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph)	30 - 15.0	92 16 (M) 78 7.5	Infiltration: Method Construction quality Fireplaces	Simplified Tight 1 (Tight)	

Construction descriptions	Or	Area	U-value BundS-TF	insul R evificium	Htg HTM	Loss Ban	Cig HTM Subt?	Gain But
Walls								
STD - Basement Wall - R-13 - Framed: 8" Below Grade Concrete Wall,	n	123	0.057	13.0	0	0	0	0
2"x4" Walls,R-13 Cavity Insulation,1/2" Gypsum Board Finish	6	97	0.057	13.0	0	0	0	0
	s	143	0.057	13.0	0	0	0	0
	w	97	0.057	13.0	0	0	0	0
	al	460	0.057	13.0	0	0	0	0
STD - Frame - R-13S: Stucco Ext, 1/2" Wood Shth, 2"x 4" Frm Wall,	n	402	0.092	13.0	3.68	1479	2.35	943
R-13 Cavity Insulation, 1/2* Gypsum Board	ne	17	0.092	13.0	3.68	63	2.35	40
	e	861	0.092	13.0	3.68	3168	2.35	2020
	8	405	0.092	13.0	3.68	1491	2.35	951
	w	840	0.092	13.0	3.68	3092	2.35	1971
	nw	17	0.092	13.0	3.68	64	2.35	41
	al	2542	0.092	13.0	3.68	9358	2.35	5965
Partitions (none)								
Windows								
U-32 SHGC-32: U-32 SHGC-32 - Windows; NFRC rated	n	98	0.320	0	12.8	1260	12.0	1184
(SHGC=0.32); 8 ft head ht	ne	12	0.320	0	12.8	154	26.3	316
	e	110	0.320	0	12.8	1403	36.1	3957
	8	114	0.320	0	12.8	1455	15.7	1781
	w	71	0.320	0	12.8	914	36.1	2578
	nw	12	0.320	0	12.8	154	26.3	316
	al	417	0.320	0	12.8	5339	24.3	10133
U-32 SHGC-32 GD: U-32 SHGC-32 - Glass Door; NFRC rated	s	20	0.320	0	12.8	257	15.7	315
(SHGC=0.32); 8 ft head ht	w	18	0.320	0	12.8	229	36.1	645
	al	38	0.320	0	12.8	486	25.3	960
U-32 SHGC-32: U-32 SHGC-32 - Windows; NFRC rated (SHGC=0.32); 6 ft overhang (1 ft window ht, 0 ft sep.); 8 ft head ht	w	3	0.320	0	12.8	38	12.0	36
U-32 SHGC-32: U-32 SHGC-32 - Windows; NFRC rated (SHGC=0.32); 6 ft overhang (6 ft window ht, 0 ft sep.); 8 ft head ht	w	18	0.320	0	12.8	230	16.4	295

Right-Suite® Universal 2015 15.0.11 RSU10196 ...uction/Beazer Homes/V505 Plan/Beazer - V505.rup Calc = MJ8 Front Ocor Jaces: W

Building Analysis Entire House Authority Air Designs, LLC.

Job: V505 Date: Feb 09, 2015 By: Joe Colburn Plan: Beazer Homes

6608 W. 95th Place, Westminster, CO 80021-6422 Phone: (720) 354-8105 Email: Joe@AuthorityAir.com Web: www.AuthorityAir.com

Project Information

For: Justin Wilson, Construction Instruction 3259 Spruce St., Denver, CO 80238 Phone: (719) 337-4749 Web: www.ConstructionInstruction.com Email: Justin@ConstructionInstruction.com

Design Conditions

Location:			Indoor:	Heating	Cooling
Charleston Intl AP, SC, U	JS		Indoor temperature ("F)	70	75
Elevation: 49 ft			Design TD ("F)	40	17
Latitude: 33°N			Relative humidity (%)	50	50
Outdoor:	Heating	Cooling	Moisture difference (gr/lb)	35.4	55.5
Dry bulb (°F)	30	92	Infiltration:		
Daily range (°F)	-	16 (M)	Method	Simplified	
Wet bulb (°F)	-	78	Construction quality	Tight	
Wind speed (mph)	15.0	7.5	Fireplaces	1 (Tight)	

Η	ea	ti	nç
			_

Component	Btuh/ft ²	Btuh	% of load
Walls Glazing Doors Ceilings Floors Infiltration Ducts Piping Humidification Ventilation	3.1 12.8 4.0 1.1 1.3 1.2	9358 6094 161 1572 2044 3851 2899 0 0 0	36.0 23.5 0.6 6.1 7.9 14.8 11.2 0 0
Total		25977	100.0

Cooling

Component	Btuh/ft ²	Btuh	% of load
Walls	2.0	5965	22.7
Glazing	24.0	11424	43.4
Doors	3.0	123	0.5
Floors	0	2123	0.1
Infiltration	0.4	1355	5.2
Ventilation		3398	12.9
Internal gains		1920	7.3
Blower		0	0
Adjustments Total		26308	100.0

Latent Cooling Load = 4042 Btuh Overall U-value = 0.078 Btuh/ft²-°F

Data antrias shocked

Results can help you make better decisions

2) Select the right equipment

Air Conditioners | Heat Pump | Mini Splits | Condenser | Geothermal | Boiler | Furnace

ACCA Equipment Selection

Good System Selection

Heating and cooling systems come in specific sizes

(2, 2.5, 3 ton, or 45, 70, 90 Thousand BTUs for example)

- For heating it is acceptable to select a system that is within 110% -125% of the design load slightly oversized
- For cooling choose a system that is between 90% 110% of design load
- Other issues:
 - Equipment location (garage, attic, crawl...)
 - Blower type (ECM, PSC, HV...)
 - Filtration needs

Good System Selection

- Use manufacturer's technical manuals to match:
 - Required heat output
 - Required cooling output
 - Sensible & latent (moisture) loads
 - Fan / airflow delivery capacity and static pressure

*UH2C100A	9V4V FURNACE COO	LING AIR	FLOW (CF	M) AND	POWER (W	ATTS) VS. EX	TERNAL	STATIC P	RESSUR	E WITH FI	LTER
OUTDOOR	AIRELOW	D	IP SWITC	H SETTIN	IG		E	XTERNAL	STATIC	PRESSUR	E
(TONS)	SETTING	SW 1	SW 2	SW 3	SW 4		0.1	0.3	0.5	0.7	0.9
	LOW (350 CFM/TON)	ON	ON	OFF	ON	CFM WATTS	808 75	824 125	840 170	835 210	830 250
2.5	NORMAL (400 CFM/TON)	ON	ON	OFF	OFF	CFM WATTS	938 100	963 160	959 205	964 255	975 310
	HIGH (450 CFM/TON)	ON	ON	ON	OFF	CFM WATTS	1058 150	1100 200	1121 265	1136 330	1142 395
3	LOW (350 CFM/TON)	OFF	ON	OFF	ON	CFM WATTS	1004 120	1010 175	1027 230	1044 285	1050 345
3.0	NORMAL (400 CFM/TON)	OFF	ON	OFF	OFF	CFM WATTS	1141 170	1190 245	1214 310	1229 380	1234 450
	HIGH (450 CFM/TON)	OFF	ON	ON	OFF	CFM WATTS	1336 250	1375 330	1387 410	1388 480	1384 545
3	LOW (350 CFM/TON)	ON	OFF	OFF	ON	CFM WATTS	1153 180	1206 250	1230 320	1239 395	1244 460
3.5	NORMAL (400 CFM/TON)	ON	OFF	OFF	OFF	CFM WATTS	1390 285	1418 465	1439 445	1441 515	1373 540
Ī	HIGH (450 CFM/TON)	ON	OFF	ON	OFF	CFM WATTS	1575 400	1606 495	1632 590	1596 645	1445 590
	LOW (350 CFM/TON)	OFF	OFF	OFF	ON	CFM WATTS	1388 290	1423 360	1444 440	1444 515	1390 540
4.0	NORMAL (400 CFM/TON)	OFF	OFF	OFF	OFF	CFM WATTS	1610 415	1641 515	1666 635	1607 650	1449 595
Ī	HIGH (450 CFM/TON)	OFF	OFF	ON	OFF	CFM WATTS	1847 630	1863 735	1816 780	1687 720	1532 665

NOTES: "First letter may be "A" or "T"

1. At Continuous fan setting: Heating or Cooling airflows are approximately 50% of selected cooling value.

 LOW airflow (350 cfm/ton) is COMFORT & HUMID CLIMATE setting; NORMAL airflow (400 cfm/ton) is typical setting; HIGH airflow (450 cfm/ton) is DRY CLIMATE setting.

Use real fan specs.

Preferred furnace choices

- Sealed combustion chamber
- Venting system decoupled from house pressures
- Efficiencies of 90%+
- High efficiency blower motors
 ECM
- Two/multi stage heating

Always Choose Direct Vent

69

LOW LOAD HOMES AND EQUIPMENT SELECTION

SINGLE STAGE

VS

2 STAGE

VS

FULL MODULATION

What's the difference???

	Zones 6-7 NEAR N	et zero homes	
Three-storey, town	Two-storey, detached	Single-storey, detached	Two-storey stacked back-to-back town
Image used with builder's permission	Image used with builder's permission	Image used with builder's per	Unit A Unit B unit B unit B unit B
Description:	Description:	Description:	ription:
 1,600 sf on 3 floors plus 	 1,400 sf on 2 floors plus 	 1,300 sf bungalow plus 	00 sf on 2 floors
basement	Dasement	basement - Erept facing NW /bishes	ont facing SW (highest cooling);
 From lacing E (nignest cooling) Energy Star certified 	 Front facing vv (nignest cooling) Energy Star certified 	Front facing two (nignes ZO Fnerrow Star certified	NE 6-7 argy Star certified
Design Loads: (for mid unit)	Design Loads:	Design Loads:	In Loads: (for upper-mid unit)
Greater Toronto Area, ON	Greater Toronto Area, ON	Greater Toronto A	onto Area, ON
DHL: 15,786 Btu/h	DHL: 16,547 Btu/h	DHL: 20,335 Btu/h	6,901 Btu/h
DHG: 19,192 Btu/h	DHG: 18,556 Btu/h	DHG: 19,354 Btu/h	G: 13,850 Btu/h
Ottawa, ON	Ottawa, ON	Ottawa, ON	rtawa, ON
DHL: 17,721 Btu/h	DHL: 18,573 Btu/h	DHL: 22,862 Btu/h	DHL: 7,984 Btu/h
Calgary AB	Calgary AB	Calgary AB	Calgary AB
DHL: 19.817 Btu/h	DHL: 20,738 Btu/h	DHL: 25.601	DHL: 8,775 Btu/h
DHG: 18,118 Btu/h	DHG: 17,375 Btu/h	DHG: 18,851 Btu/h	DHG: 14,468 Btu/h
Saskatoon, SK	Saskatoon, SK	Saskatoon, SK	Saskatoon, SK
DHL: 21,991 Btu/h	DHL: 22,879 Btu/h	DHL: 28,249 Btu/h	DHL: 9,779 Btu/h
DHG: 18 822 Btu/h	DHG: 18 169 Btulb	DHG: 19 899 Btu/h	DHG: 14 841 Btu/b

A STUDY IN EQUIPMENT SELECTION FOR LOW LOAD HOMES

Figure 21: Runtime Duration Curves for Single-Stage Equipment

Figure 22: Runtime Duration Curves for Two-Stage Equipment

A STUDY IN EQUIPMENT SELECTION FOR LOW LOAD HOMES

Table 8: Median and Coldest-day Hourly Runtimes for Single-Stage

Parameter	A-size (120% of F280)	B-size (170% of F280)	C-size (250% of F280)
Median Runtimes	17 minutes per hour	12 minutes per hour	8 minutes per hour
Coldest 5% ON-times	39 minutes per hour	27 minutes per hour	18 minutes per hour
Coldest 5% OFF-times	21 minutes per hour	33 minutes per hours	42 minutes per hour

Table 9: Median and Coldest-day Hourly Runtimes for Two-Stage

Parameter	A-size (120% of F280)	B-size (170% of F280)	C-size (250% of F280)
Median Runtimes	29 minutes per hour	20 minutes per hour	13 minutes per hour
Coldest 5% ON-times	54 minutes per hour	45 minutes per hour	31 minutes per hour
Coldest 5% OFF-times	6 minutes per hour	15 minutes per hours	29 minutes per hour

Table 10: Median and Coldest-day Hourly Runtimes for Modulating Heating Systems

Parameter	A-size (120% of F280)	B-size (170% of F280)	C-size (250% of F280)
Median Runtimes	39 minutes per hour	30 minutes per hour	20 minutes per hour
Coldest 5% ON-times	57 minutes per hour	53 minutes per hour	46 minutes per hour
Coldest 5% OFF-times	3 minutes per hour	7 minutes per hours	14 minutes per hour

SINGLE STAGE

MODULATI NG

Preferred AC choices

- Outdoor condenser matched to indoor coil
- SEER ratings of 14+
- High efficiency blower motors - ECM
- Two stage cooling
- Dehumidification cycles
- Inverter for simple connection to solar

New Realities in HVAC Design & Performance

High Performance homes need more efficient motors!

- Capable of meeting small loads, part loads and full loads!
- Use 1/5 of original PSC motor types.
- Run efficiently at a variety of speeds (Modulation)
- Equipment lasts longer
- Enables balanced temperatures throughout home
- Enhances Ventilation "Effectiveness"

ECM Product Features: Efficiency

ECM Product Features: Constant Airflow

Airflow (CFM)

What about Heat Pumps?

- Is it the first thing to do?
- Reliance on electric grid
- Can do Ground, Water or Air
- High Performance homes help reduce capital cost

Energy Efficiency

- Heat pumps are hard to overlook
- Low ambient temperature units: COPs of 2 to 4
- Be mindful of HSPF rating points and operating conditions – cold weather:
- Zone 5+ + 8.6 HSPF+
- Dual Fuel /Auxillary back up as gas vs electric.

HVAC NET ZERO HOME LESSONS LEARNED: EQUIPMENT

- Enables ''smart'' use of Electrical or Gas
- Balance point can be either Operational OR Economic
- Provides resilience

HVAC NET ZERO LESSONS LEARNED: Low loads change the game. Low ambient heat pump study

	Manufacturer	EnerGuide	Test	Season
ASHP				
Seasonal Energy Efficiency Ratio (SEER)	16	>=14	18	Cooling
Coefficient of Performance (COP)	2.75 2.05		3.23	Heating
GSHP				
Seasonal Energy Efficiency Ratio (SEER)	12.9	>=14.1	19.7	Cooling
Coefficient of Performance (COP)	3.0	>=3.3	3.44	Heating

Select Heat Pumps for both Cooling & Heating Capacity

MUZ-HM24NA2

Outdoor unit model			MUZ-HM24NA2
Capacity	Cooling #1 Btu/h		22,500 (5,800 ~ 22,500)
Rated (Minimum-Maximum)	Heating 47 *1	Btu/h	26,000 (5,400 ~ 26,000)
Capacity Rated (Maximum)	Heating 17 #2	Btu/h	18,500 (18,500)
Power consumption	Cooling #1	W	2,575 (275 ~ 2,575)
Rated (Minimum-Maximum)	Heating 47 #1	W	2,445 (265 ~ 2,445)
Power consumption Rated (Maximum)	Heating 17 #2	w	2,245 (2,245)
EER #1 [SEER] #3	Cooling		8.6 [18.0]
HSPF IV #4	Heating		8.5
COP	Heating #1		3.05
	Cooling (208/230)	%	99/99
Powerflactor	Heating (208/230)	%	99/99

New Low Temperature Heat Pumps can be very effective - when properly sized and selected

Cooling Capacity Btu/h	EER	SEER	Heating Bt	Capacity u/h	COP	HSPF
95°F			47 F	17 F	47 F	2
18,000	12.50	18.0	22,000	13,900	3.44	9.3
18,000	12.10	16.0	22,000	13,900	3.52	9.0
18,000	12.30	17.0	22,000	13,900	3.48	9.2
18,000	12.50	18.0	22,000	13,900	3.67	9.0
22,000	12.50	18.0	24,000	14,100	4.04	9.5
22,000	10.60	15.5	24,000	14,100	3.42	9.0
22,000	11.55	16.8	24,000	14,100	3.74	9.3
35,200	8.80	16.0	36,400	22,000	3.56	9.4
33,800	8.10	14.5	36,400	21,200	3.08	8.7
34,400	8.45	15.3	36,400	21,600	3.32	9.1

Outdoor Temp (°FWB)	Capacity (Btu/h)	Input (Watts)	СОР
60	45,980	3,811	3.5
55	41,040	3,650	3.3
50	39,710	3,521	3.3
45	38,608	3,295	3.4
40	38,000	3,230	3.4
35	38,000	4,038	2.8
30	38,000	4,684	2.4
25	38,000	5,168	2.2
20	38,000	5,491	2.0
15	38,000	5,749	1.9
10	38,000	5,911	1.9
5	38,000	6,040	1.8
0	35,720	6,105	1.7
-5	33,820	6,072	1.6
-10	31,920	6,137	1.5
-15	29,640	6,202	1.4
-20	27,360	6,234	1.3
-25	25,080	6,266	1.2
-30	22,800	6,299	1.1
-35	20,520	6,331	0.9

Select Heat Pump Capacity based on Outside Temperature

* Above numbers are approximated

Example of a different strategy - Ductless opportunities

- Provides zoning
- Can target specific high load areas

Mini-Split Systems - with Low Temp. capabilities

 In very high performance homes, it could provide all heating & cooling needs

3) Design the ducts correctly

Systems and Applications | Blowers and Air-side Devices | Sizing Calculators | Efficiency, Leakage and Noise

ACCA Duct Design

Manual D provides a duct sizing schedule to deliver the air to the space intended

Manual D provides a duct sizing schedule to deliver the air to the space intended

Name			Design (Btuh)	(Htg cfm)	Clg (cfm)	Design FR	Diam (in)	Rect Size (in)	Duct Matl	Actual Ln (ft)	Ftg.Eqv Ln (ft)	Trunk
Opt Bedroom		с	830		46	50	0.429	4	0×0	ShMt	19.8	60.0	
Opt Bedroom-A		с	830		46	50	0.205	4	0×0	ShMt	27.3	140.0	st1
Great Room		с	2395		121	144	0.242	6	0×0	ShMt	21.8	120.0	st2
Master Bedroom-A	Т	С	1679	Τ	72	101	0.092	6	0×0	ShMt	60.6	310.0	st3
Master Bedroom		С	1679		72	101	0.123	6	0×0	ShMt	29.5	250.0	st23
Master Bath		h	2000		61	50	0.134	5	0×0	ShMt	35.4	220.0	st21
Bath		h	531		16	13	0.102	4	0×0	ShMt	32.6	305.0	st18
Bedroom 2		С	1854		93	111	0.087	6	0×0	ShMt	74.6	320.0	st16
Stairs/Hall Up		h	1323		41	35	0.085	4	0×0	ShMt	40.9	360.0	st14
Bedroom 3		С	1977		88	119	0.094	6	0×0	ShMt	50.3	315.0	st5
WIC		h	392		12	9	0.138	4	0×0	ShMt	28.3	220.0	st20
Dining Room		с	891		45	54	0.130	4	0×0	ShMt	17.9	245.0	st6
Living Room		h	3264		100	94	0.102	6	0×0	ShMt	55.6	280.0	st10
Opt Bedroom 2		h	2271		70	63	0.098	5	0×0	ShMt	55.8	295.0	st12
Powder		h	641		20	19	0.102	4	0×0	ShMt	36.1	300.0	st7
Foyer/Stairs		с	890		53	53	0.084	5	0×0	ShMt	42.8	365.0	st8
Opt Bath		h	330		10	1	0.129	4	0×0	ShMt	30.3	235.0	st17
Opt Rec Room		h	1945		60	32	0.143	4	0×0	ShMt	9.6	230.0	st19
Kitchen		h	2345	/	72	40	0.293	4	0×0	ShMt	7.0	110.0	st2
Opt Rec Room-A		h	1945		60	32	0.128	5	0×0	ShMt	23.7	245.0	st6
Laundry		h	1362		42	29	0.103	4	0×0	ShMt	32.2	300.0	st7

Heat & <u>Air</u> Distribution BTU/hr Carrying Capacity

Duct size	Airflow CFM	25 ⁰F Cooling	45 ^o F Heating	55 ⁰ F Heating
4"	30-40	800 -1100	1485 -1980	1815 - 2420
5"	50-60	1300 -1650	2375 - 3960	3025 - 3630
6"	90-110	2475 -3025	4455 - 5445	5445 - 6710

ZERH = LOW LOAD HOMES DISTRIBUTION SIZING AND SELECTION

	1990 Code	IECC 2012	ZERH
Load	70,000 BTUs	36,000 BTUs	26,000 BTUs
	3.0 tons	2.0 tons	1.5 tons
Air Flow	1200 CFM	750 CFM	600 CFM
Duct sizesMainsBranch	8"x28"	8" x 18"	8" x 12"
	5" - 6"	5"	3"- 4"

Distribution Systems

- HVAC contractor must use the heat loss/gain calculations to properly size duct work
 - It is critical to consider the entire system and process.
 - Layout & location of distribution system
 - Materials used flexible duct or sheet metal, insulated or noninsulated
 - Impact on pressurization of rooms or spaces
 - Effective occupant comfort control

HVAC by Design

Advanced

Ducts & equipment in conditioned space

A closet & dropped ceiling

Use direct vent equipment

Ducts in conditioned space will be cooler in summer, warmer in winter

Conditioned attics are an option

Place the ducts in conditioned space

A dropped ceiling in the hallway can be effective

SUERGY RACE

Ducts are now properly insulated and any duct leakage is to the interior

and the man is the

Properly sized and located grilles "throw" air to the perimeter windows and walls

Open web floor joist systems

Layout your floors to accommodate duct

Buried Ducts are an Option

Seal Ducts

Mastic with a brush is quickest & best

Sealing Ducts Matters!!!

- Getting air where you need it
- Allowing balancing & seasonal adjustment to work
- Empowers zoning to work

Low Load Homes suffer from lack of air flow-THROW and MIXING! (Not lack of Returns)

Small diffuser

Choose Proper Diffusers with Velocity and "Throw" in Mind

Zoning is becoming (almost) a requirement in some low load home designs

- Matching seasonal load adjustments
- Example basements
- Accurate delivery of part loads in 3 story higher density townhome designs
- Making best use of equipment capacity

 Efficiency and cost savings? Cooling = 20% savings - +

Ducted Returns will become expected

 A good choice is to hard duct returns...strategically to a centralized location

Return Air Paths

Graphics Courtesy of Building Science Corp.

A single return requires transfer grilles to provide a return path, and avoid pressurizing bedrooms

Note: not an IECC requirement

