

conference & expo

Ultra-Efficient Housing The Solution for a Sustainable Future

Tim Eian, Dipl.-Ing. Certified Passive House Planner & Consultant

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 hours** of credit toward **Building Officials and Residential Contractors code/ energy** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

high performance architecture

intep

Building Performance, Measured Results

Learning Objectives

- 1.The Passive House building energy standard
- 2.Energy efficiency
- 3.Climate efficiency
- 4.Life Cycle Cost efficiency
- 5. Moving from standard construction to Passive House
- 6.New construction multi-family affordable housing
- 7.Retrofit multi-family affordable housing
- 8. The tangible and intangible benefits of ultra-efficiency

"Passivhaus" - Passive House

"A rigorous, voluntary building energy standard focusing on highest energy efficiency and quality of life at low operating cost."

Passive House in 90 Seconds

Global Standard

Think globally, build locally.

Climate Zone Specificity

Climate Zone Targets

	Ора	Opaque envelope ¹ against Windows (including exterior doors)			r doors)	Vent	ilation				
	ground		ambient air		0	veral	1 ⁴	Glazing ⁵	Solar load ⁶	vent	nation
	Insu-	Exterior	Interior in-	Exterior					Max.	Min	
Climate	lation	insulation	sulation ²	paint ³	M	ax. he	at	Solar heat gain	specific	heat	Min. hu-
zone according to PHPP	Max. he	at transfer c (U-value)	oefficient	Cool colours	tı co (U _C	ransfe efficie D/W,insta	er ent _{Illed})	coefficient (g-value)	solar load during cooling period	reco- very rate ⁷	midity re- covery rate ⁸
		[W/(m ² K)]		-	[V	V/(m²	K)]	-	[kWh/m²a]		%
					C.						
Arctic		0.09	0.25	1	0.45	0.50	0.60	U _g - g*0.7 ≤ 0		80%	-
Cold	Deter-	0.12	0.30		0.65	0.70	0.80	U _g - g*1.0 ≤ 0		80%	-
Cool- temperate	mined in PHPP	0.15	0.35		0.85	1.00	1.10	U _g - g*1.6 ≤ 0		75%	Ŧ
Warm- temperate	from project specific	0.30	0.50	÷	1.05	1.10	1.20	U _g - g*2.8 ≤ -1		75%	÷
Warm	heating	0.50	0.75	-	1.25	1.30	1.40	-	100		-
Hot	and cooling degree davs	0.50	0.75	Yes	1.25	1.30	1.40			-	60 % (humid climate)
Very hot	against ground.	0.25	0.45	Yes	1.05	1.10	1.20			-	60 % (humid climate)

Third-Party Certified

intep

Certificate

The Passive House institute awards the seal "Certified Passive House" to the following building

24th Street Passive House #1, 749 24th St. North, La Crosse, WI 54601, USA Client: Western Technical Collage 400 7th St. North, La Crosse, WI 54602, USA

Prassive House

Integrated Planning LLC 901 23rd Ave NE, Minneapolie, MN 55418, USA Building Integrated Planning LLC Services: 901 23rd Ave NE, Minneapolis, MH 55418, USA

mine This beating

This building was designed to meet Passive House criteria as defined by the Passive House Instit With appropriate on-site implementation, this building will have the following characteristics:

- Excettent thermal insulation and optimised connection details with respect to building r demand or heating load will be limited to 15 kWh per m² of living area and year or a heating load of 10 W/m² When outdoor temperatures are high, thermal comfort can be ensured with pas-minimal energy demand for cooling and dehumidification according to the location-s-requirements.
- A highly airtight building envelope, which eliminates draughts and reduces the h The air change rate through the envelope at a 50 Pascat pressure difference, as w ISO 9972, is less than 0.6 air changes per hour with respect to the building* A controlled ventilation system with high quality filters, highly efficient heat n controlled control control overland ledge at control water by A consoling version system, was night quarty nears, night an open a consumption, ensuring excellent indoor air quality with low energy consumption
- A total primary energy demand for heating, domestic hot water, ventilation and during normal use of less than 120 kWh per m² of living area and year

This certificate is to be used only in combination with the associated certificat the exact characteristics of the building. Houses offer high comfort throughout the year and can be here example, by heating/cooling the supply air. Even in times of cold outdoor tem exampler, by heating/cooling the supply air. Even in times of cold outdoor tem of a Passive House is evenly warm on the inside and the internal surface temp of a rassive nouse is eveny warm or use inside and the international and a source time air temperatures. Due to the highly airtight envelope, draughts are elim air temperatures. Oue to the highly around environment, draught energy or ventilation system constantly provides fresh air of excellent quality. Energy or vermination system constantly provides tream air or excellent quarty. Energy 6 comfort in a Passive House are very low. Thanks to this, Passive Houses of comfort in a Passive House are very low. Thanks to this, Passive Houses off, and future rises in energy prices. Moreover, the climate impact of Passive House, use, thereby resulting in the emission of comparatively low levels of carbor

stadt, 17.10.2014 Felst holfang

Certificate-ID: 9689_PHI_PH_20141017_AM

Passive House Institute

Passive House

Certified

Tool for Sustainable Design

Path to Sustainability

Basic Concept

Conservation first Minimize losses Maximize (free) gains

The 5 Principles

Active versus Passive

Active: 25-125 kBtu/(sf yr)

85 - 450 kWh/(m² a), typically found in the U.S.

Passive: 4.75 kBtu/(sf yr)

15kWh/(m² a), maximum target

Energy Footprint Comparison

- Heating (active)
- Hot water (active)
- Cooling (active)
- Household Electricity
- Heat & hot water (passive)

Passive House

- up to 95% less heating energy
- ➡ 50 to 75% less total energy

Energy per Square Foot and Year

Gas mileage for buildings.

Heating/ Cooling Energy Targets

intep

Source Energy Targets

 $\leq 120 \text{ kWh/(m^2 a)} + ((QH - 15 \text{ kWh/(m^2 a)}) * 1.2)$

Suggested Heat Load Target

$\leq 10W/m^2$

Heating energy can be supplied through ventilation system.

Airtightness Target

EnerPHit V

Measured with a blower door in the field.

Component Targets

Climate zone	Hygiene ¹	Comfort ²			
	Min. temperature factor	Max. thermal transfer coefficient		nsfer	
	f _{Rsi=0.25 m²K/W}	U-value			
	0	[W/(m²K)]			
			L		
Arctic	0.80	0.45	0.50	0.60	0.35
Cold	0.75	0.65	0.70	0.80	0.50
Cool-temperate	0.70	0.85	1.00	1.10	0.65
Warm-temperate	0.60	1.10	1.15	1.25	0.85
Warm	0.55	-	1.30	1.40	-
Hot		-	1.30	1.40	
Very hot		-	1.10	1.20	-

- Maximum U-values
- Minimum R-values
- SHGC requirements
- Minimum heat-recovery rates

EnerPHit offers a Component Track.

Energy Modeling

Definition of Ultra-Efficiency

Energy efficiency
Climate efficiency
Life cycle cost efficiency

Energy Efficiency Principles

Dr. Wolfgang Feist

Climate Efficiency Principle

Life Cycle Cost Efficiency Principles

Ultra-Efficiency Priorities

- 1.Building Envelope: Energy avoidance and comfort through use of "passive" measures
- 2.Mechanical Systems: Healthy and efficient operation through use of adequately sized "active" systems
- 3. Electrical Systems: Energy-efficient operation through use of current technology
- 4.Renewable Energy and Storage Systems: Sustainable energy generation
- 5. Fresh Water: Reducing the amount of potable water used on site
- 6.Stormwater: Managing stormwater responsibly
- 7. "Green" Building Materials: People and earth-friendly materials and construction

The Passive House Upgrade

Student Housing - State of South Dakota Pierre, SD - 2012/14

Project

Using the Passive House Standard for State projects, what changes?

- Differences for the Building Envelope
- Thermal Bridge Free Design
- Heat Flow and Loss Comparisons
- Energy Consumption and Flow Comparisons
- Carbon Emissions Comparison
- First Day and Life Cycle Cost Comparison
- Key Conclusion and Benefits

Building Envelope Comparison

Component	Base	Passive House
Exterior Walls	R-16 (h sf °F/ Btu)	R-34 (h sf °F/ Btu)
Roof	R-70 (h sf °F/ Btu)	R-70 (h sf °F/ Btu)
Slab	R-3 (h sf °F/ Btu)	R-27 (h sf °F/ Btu)
Windows, Ext. Doors	U- 0.41 (Btu/ h sf °F) SHCG-0.27	U- 0.12 (Btu/ h sf °F) SHCG-0.50
Thermal Bridges	Significant	Free
Airtightness	ACH ₅₀ : 3.0 1/h (est.)	ACH ₅₀ : ≤ 0.2 1/h (field tested)
Ventilation w/ HR	51% HR-Efficiency 0.45 Wh/ m³ Electr. Eff.	87% HR-Efficiency 0.45 Wh/ m ³ Electr. Eff.
Heating/ Cooling	District heating/cooling	District heating/cooling

Opportunity for on-site HVAC system

Thermal Bridge Comparison

Heat Flow Comparison

Heat Loss Comparison

Energy Consumption Comparison

intep

Carbon Emissions Comparison

First-Day Cost Comparison

Building Component	Base 📃	Passive House	Difference
Structure: Concrete, Steel, Masonry	\$ 2,015,796	\$ 2,015,796	\$ 0
Rough + Finish Carpentry	\$ 230,339	\$ 230,339	\$ 0
Roofing, Moisture & Thermal Protection	\$ 334,957	\$ 634,957	\$ 300,000
Glass & Glazing/ Door + Hardware	\$ 611,076	\$ 1,067,076	\$ 456,000
Drywall Steel Stud Framing	\$ 587,489	\$ 587,489	\$ 0
Interior Finishes	\$ 451,441	\$ 451,441	\$ 0
Specialties & Accessories	\$ 84,406	\$ 84,406	\$ 0
Elevators	\$ 95,000	\$ 95,000	\$ 0
Plumbing Systems + Fire Suppressions System	\$ 762,800	\$ 762,800	\$ 0
HVAC Systems	\$ 518,650	\$ 468,650	\$ (50,000)
Electrical Systems	\$ 683,675	\$ 683,675	\$ 0
Earthwork Excavation	\$ 122,590	\$ 122,590	\$ 0
Building Investment Cost Total	\$ 6,498,219	\$ 7,196,046	\$ 697,827

Construction cost increase approx. 10.5%

Life Cycle Cost Comparison

Annual Annuitized Cost Reduction of approx. 3%

Multifamily New Construction

Hook & Ladder Apartments - Affordable Housing Minneapolis, MN - 2016/18

Project

59-unit, affordable multi-family housing project. 61,000 sf on 5-stories.

- Differences in Construction
- Differences in Systems
- First Day Cost Comparison
- Life Cycle Cost Comparison
- Site and Source Energy Comparison
- Carbon Comparison
- Conclusion and Benefits

Building Envelope Comparison

Building Envelope	Base	Passive House
Exterior Walls	R-22 (h sf ºF)/Btu	R-45 (h sf °F)/Btu
Roof	R-40 (h sf ºF)/Btu	R-65 (h sf °F)/Btu
Slab	R-10 (h sf ºF)/Btu	R-25 (h sf °F)/Btu
Windows	U-Factor: 0.30 Btu/(h sf ºF) SHGC: 30%	U-Factor: 0.14 Btu/(h sf °F) SHGC: 26%
Thermal Bridges	No consideration	Thermal bridge free design
Airtightness	No consideration	ACH ₅₀ : 0.2 ¹ / _h (Preset and field-measured)

HVAC & DHW System Comparison

System	Base	Passive House
Ventilation	Assumed bypass inside "magic pack" heating and cooling system in combination with individual bathroom exhaust fans.	Balanced whole-house heat recovery ventilation system with Passive House recovery efficiency: 87% Electric efficiency: 0.45 Wh/m ³ Automated controls based on air quality
Heating/ Cooling	Individual apartment "magic pack" units with ducted distribution (gas furnace heat, electric air- conditioning)	Single, whole-house air-source electric heat-pump with individual apartment indoor units and ducted distribution (electric heating and air- conditioning)
Domestic Hot Water	Central gas-fired domestic hot water boilers with circulation line	Summer: heat recovery from air- conditioning to domestic hot water system; summer and winter: gas- fired backup boiler with circulation line

Site Energy Comparison

	Heating Energy (kBTU/ yr)	Total Energy (kWh/ yr)	Total Energy (kBTU/ yr)	Energy Use Index (kWh/ gsf)	Energy Use Index (kBTU/ gsf)
US existing					78.8
Base	116,360	581,254	1,983,795	9.5	32.6
Passive House	3,792	196,024	669,021	3.2	6.6
Passive House Savings Potential	-112,568 (-97%)	-385,230	-1,314,774	-66%	-66% (-92% vs. existing)

Site Energy Demand is reduced by 66%, or more

Source Energy Comparison

	Total source energy (kWh/ yr)	Source Energy Use Index (kWh/ gsf)	Source Energy Use Index (kBTU/ gsf)
US existing			127.9
Base	1,106,432	18.2	62.0
Passive House	401,686	6.6	22.5
Passive House Savings Potential	-704,746	-64%	-64% (-82% versus existing)

Source Energy Demand is reduced by 64%, or more

Carbon Comparison

	Total CO2 Impact (tons CO2 equ.)	CO2 Impact Index (kg CO2 equ./ gsf)
Base	184	3.03
Passive House	109	1.79
Passive House Savings Potential	-75	-41%

Carbon Emissions are reduced by 41%, or more

Energy Cost Comparison

	Cost Index (\$/ gsf)
Base	0.482
Passive House	0.328
Passive House Savings	-32%

Energy Cost are reduced by 32%, or more

First-Day Cost Comparison

Based on predesign analysis, the first day investment cost for the Passive House building is between 7.5 and 17% above the cost for the base building (MN code).

This is the first project of its kind in the region and the developer and build teams are new to Passive House making this a pilot project.

Life Cycle Cost Comparison Annual annuitized cost difference in percent.

	60 years	50 years	40 years	30 years	20 years	10 years
Passive House savings potential (high)	6.36%	7.03%	3.95%	3.13%	1.31%	-5.40%
Passive House savings potential (low)	11.95%	12.87%	9.00%	8.63%	6.05%	-0.08%

Life Cycle Cost are cheaper than conventional building.

Multifamily Retrofit

Elliot Tower - Affordable Housing Retrofit Minneapolis, MN - 2017

Project

88-unit, affordable multi-family housing project retrofit. 48,000 sf on 14-stories.

- Differences in Construction
- Differences in Systems
- First Day Cost Comparison
- Life Cycle Cost Comparison
- Site and Source Energy Comparison
- Carbon Comparison
- Conclusion and Benefits

Ultra-Efficiency: Paradigm Shift

Building Envelope Updates

Building Envelope	Elliot Existing (h sf ºF)/Btu	Elliot Retrofit (h sf ºF)/Btu
Exterior Walls	R-4	R-45
Roof	R-3	R-50
Slab	R-1	R-10
Windows	U-0.30 SHGC: 30%	U-0.14 SHGC: 30%
Thermal Bridges	No consideration	Minimal
Airtightness	No consideration	ACH ₅₀ : 0.2

Ventilation System Updates

System	Elliot Existing	Elliot Retrofit	Multifamily Building New		
Ventilation	Outside air supplied to	Balanced, whole-house	Balanced, whole-house		
	central corridors on each	heat recovery ventilation	heat recovery ventilation		
	floor. Post heat via central	system with Passive	system with Passive		
	boiler system. Post cooling	House certified recovery	House certified recovery		
	and dehumidification via	efficiency of around 85%.	efficiency of around 85%.		
	window air conditioners in	No need for post heat, or	No need for post heat, or		
	apartments. Exhaust via	post cooling and	post cooling and		
	bath fan stacks on roofs. No	dehumidification.	dehumidification.		
	heat recovery.				

HAC System Updates

System	Elliot Existing	Elliot Retrofit	Multifamily Building New
Heating/ Cooling	Heating: Gas-fired hot- water system with unit base boards Cooling: Window air conditioner	Air, or ground-source VRF system with central heat pump units and split heads in apartments; option for summer heat recovery to the domestic hot water system	Air, or ground-source VRF system with central heat pump units and split heads in apartments; option for summer heat recovery to the domestic hot water system

Domestic Hot Water System Updates

System	Elliot Existing	Elliot Retrofit	Multifamily Building New
Domestic Hot Water	Central, gas-fired,	Air, or ground source heat	Air, or ground source heat
	tanked domestic hot	pump system with gas-	pump system with gas-
	water boilers with	fired backup boiler;	fired backup boiler;
	circulation line;	insulated pipework; option	insulated pipework; option
	uninsulated piping	for summer heat recovery	for summer heat recovery
Distribution	Uninsulated fresh water	Continuously insulated	Continuously insulated
	piping	fresh water piping	water piping

Savings Potential

Project	Heating Energy (kWh/ yr)	Cooling Energy (kWh/ yr)	Domestic Hot Water (kWh/ yr)	Auxiliary and Plug Loads (kWh/ yr)
Existing	992,600	53,800	268,100	357,500
Ultra-Efficiency	57,400	37,600	106,900	223,100
Ultra-Efficiency Savings Potential	94% less	30% less	60% less	38% less

Heating Energy can be reduced by over 90%

Savings Potential continued

Project	Site Energy (kWh/ yr)	Site Energy Cost (\$/ yr)	Total CO2 Impact (tons CO2 equ.)
Existing	1,672,000	88,700	390.4
Ultra-Efficiency	425,000	36,100	167.0
Ultra-Efficiency Savings Potential	75% less	59% less	57% less

Site Energy can be reduced by 75%, cost by about 60% and CO2 by over 57%.

Investment Cost

ltem	Cost (low)	Cost (high)	
Pilot Project Cost Estimate	\$9,903,600	\$10,703,600	
Unit Cost (without Main Floor Improvements)	\$105,000	\$115,000	

Life Cycle Cost Advantage

	60 years	50 years	40 years	30 years	20 years	10 years
Savings Potential	7.8%	6.9 %	3.8%	4.9%	2.5%	-9.5 %

Life Cycle Cost are cheaper than "just fixing" the building.

Key Benefits

Highest Comfort

Superior Indoor Environmental Quality

Resource Efficiency

Cheapest Life Cycle Cost

Climate Action

Key Findings

- Differences in construction and systems are manageable but require diligent, experienced design team particularly for energy modeling and detail design
- Ultra-Efficiency costs "different" on day 1
- Life Cycle cost are cheaper (not putting any cost value on human benefits)
- Energy performance is entirely different; heating is no longer a major consumer of energy; domestic hot water production and plug loads need to be managed and reduced
- Fits the paradigm of a sustainable building

Thank You!

testudio.com

intep.com

passivehouseminnesota.org