In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 code/energy hours** of credit toward **Building Officials and Residential Contractors** continuing education requirements."

For additional continuing education approvals, please see the continuing education credit section in the conference agenda booklet.

Improving Residential HVAC Performance and Energy Efficiency

Ah, Duluth in February...

Introduction

Bruce Stahlberg

- Owner of Affordable Energy Solutions, Inc (AES).
- Over 35 years experience, has performed over 8,000 energy audits on various building types.
- Focused on HVAC Quality Install Testing protocol including static pressure, air flow testing and Manual J calculations.

Who are you? Weatherization > Utilities Government > Builders/Remodelers > HVAC Contractors > Other?

Anyone see this last year?

Agenda and Goals

- Mechanical HVAC forced air systems
 - Operation and delivery
- Manual J Sizing Calculations Importance
 - Scrutinizing Manual J calcs
- Diagnosing in the field
 - Recommended tests
- Set Up of Forced Air Systems
 - Size, Static Pressure and Air Flow
- Improving installations and performance
 - "Tweaking" Existing and New installations
 - Case Studies

Terms and abbreviations

- Manual J Heat Loss (Load) Calculation in BTUs/hour
- BTUs = Heat Hour = time
- CFM = Flow of Air in Cubic Feet per minute
- TESP = Total External Static Pressure
- Output / Input = furnace BTU/hr rating
- K = 1000 Example: 10K = 10,000
- 10kBTUs = 10,000 BTUs

Mechanical FORCED AIR System

Why the need to heat our homes?

Hint: heat loss happens

Laws of nature will equalize both to room temperature

ABRIDGED EDITION **Residential Load** Calculation

MANUAL

Free load calculation Speedsheet and instructional video available at www.acca.org/speedsheet

Step 1 – Manual J Design

- Manual J Load Calculations
 - U-values (Insulation)
 - Square feet
 - Delta T Temp change
 - BTUs/hour
 - Requires some effort (although not much)

Manual J software document

- Required with new install
- Not so for mobile homes
- Can vary widely
- Based on assumptions
- 36,435 exact ESTIMATE

				Design	Condition	ns					
Location:	Minneapolis-St Paul IAP, Min			linnesota		Elevation: 837			Daily	/ Range:	Mediun
nput Data:	it Data: Outdoor Dry Bulb Inde		oor Dry Bulb	L	atitude:	45° N		Desigr	Grains:	31	
Summer: 88 Winter: -8		88	8 75 3 70		Heated Area Cooled Area		2307 Sq.Ft. 2307 Sq.Ft.				
		-8									
			Heat/	Loss Summ	nary (Jul	y Heat L	_oad C	Calculat	ions)		
				Gross		Sens	ible	Laten	t		
				Area	Loss	Gai	in	Gain			
		V	Valls	2512.5	13416	156	5	0			
-		Wind	lows	399.25	16557	862	3	0			
		D	Doors 21		917	30	7	0	-		
	e -	Ceil	ilings 1162.5		2100	134	5	0			
		Skyli	/lights 0		0	0		0			
	4	Floors		1144	1785	0		0			
	Room Internal Loads Blower Load		oads		0	570	2	800	-		
					170	7	0		nar	milty	
Hot Water Piping Load Winter Humidification Load Infiltration				0	0		0			Ch.	
				784	0		0		HIRK	UNL J	
				2876	262	2	385		Annewed ACC		
Ventilation Duct Loss/Gain EHLF=0 ESGF=0 AED Excursion		tion		0 0			0		MJ8 Calculation		
		EHLF=0 ESGF=0			0	0		0			
		sion		n/a	0		n/a				
Subtotal				38435	195	11	1185				

Total Heating 38435 Btu

It depends on several factors...

*ACCA Manual J Load Calculation for MN

The above heating equipme average 70° F temperature atures of <u>-85</u>° F.

Actual Design temp from Mobile Home Data Plate

Delta T Design Inputs

- Examples: Winter, Summer
- Tofte: -6 F, 75 F
- Winona: -10 F, 88 F
- Fergus Falls: -17 F, 88 F
- Bemidji: -26 F, 85 F
- Minneapolis: 11 F, 88 F
- Blaine: -4 F (adjusted?)
- We design for <u>*Worst Case*</u>, the coldest day of the year

What is the HEAT LOSS demand for these homes?

Example

Home built in 1911
Insulated in 1990s
Air sealed at

same time

Is heat loss the same today as in turn of the century?

Real World

Answer

- At -36 F exterior
- 68 degrees interior
- 60K input
- 55K output available
- Furnace ran continuously

Slightly oversized

Nameplate Information

- Size found on nameplate
- Proposed size found on contractor's bid
- Furnace Sizes
 - 40K
 - 60K
 - 80K
 - 100K

Nameplate Information

- Size
- Output/input = efficiency
- Temp rise

				TIMOL	
		HEAT	STAGE	HIGH	LOW
INPUT	1	ENTREE	BTU / HR	100,000	65,000
OUTPUT	1	SORTIE	BTU / HR	93,000	61,000
AIR TEN	MPE	RATURE RIS	E DEG. F	55-65	60-70
AUGMEN	TAT	ION DE LA RE DE L'AJ	R DEG. C	31-36	33-39
The first sector				105	105

Replacing to more efficient systems

From this...

To this...

Major change in heating system, no change in ductwork

Available heat (BTUs) increases by 15%

*DOWNSIZE by at least that amount

*already oversized originally Same Input, larger Output

• 80K input, 64K output

More heat 80K input, 77K output

What is the heat loss of this home?

- 1995 construction
- 2" x 6" walls
- 1,080 sq. ft.
- Weatherized home
- Middle unit, heated on both sides
- Plus gas fireplace

Several Estimates for the same home

- 20,000 BTUs/hr
- 32,000 BTUs/hr
- 36,000 BTUs/hr
- 53,000 BTUs/hr

Depends on who you ask...

• Weatherization energy modeling = 20 KBTUs

• CoolCalc.com energy modeling = 32 KBTUs

• Contractor proposed - 2017 = 36 KBTUs

• Manual J calculation - 2021 = 52 KBTUs (several errors)

And the winner is...

- 1st stage only
- New Furnace installed 2021 = 35 KBTUS (1st stage) Measured TESP = .68" Outputs = 53 KBTUS (2nd stage) Measured TESP = .96"

Rated TESP = 0.5''

Overall End Result

- Erroneous Manual J
- System oversized
- High pressure, loud
- Requested set at 1st stage
- Contractor replaced furnace with smaller one (profit?)

Static pressure dropped from .96" to .56" Survived several cold snaps <-15 F

Impact of Oversizing

- Noisy operation
- Short cycling (on, off, on, off)
- Increased pressure
- Reduced efficiency
- Likely shorter life expectancy
- Less comfortable

Ideal Optimization = Long Run time

- Gets to Steady State
- More comfort
- Less wear and tear on system
- It runs "all the time" when cold....that is perfect
- Use Car analogy with customers

<u>Manual J – www.CoolCalc.com</u>

- Use or Compare with CoolCalc.com
 - ACCA approved
 - <u>Cool Calc Manual J YouTube</u>
 - Need some building info:
 - o Location, Age of building
 - Has Limitations!
 - Does not replace actual measurements!
 - Leans towards oversizing!
 - Not designed for Mobile Homes

Absolutely best method is to be on-site to get accurate inputs

System Design: Condensing Furnace

- Secondary Heat Exchanger
- More heat / BTUs available
- Requires more air flow
- Adds blockage in flow path

Required Air Flow increases with ductwork staying the same size = Higher Pressure

100 CFM

130 CFM

150 CFM

Recommended CFM per 10,000 BTUs

Tweaking an Existing System

- Oversized System, 15 years
- Two-stage (luckily)
- Owner complained about noise
- Set to run on 1st stage only
- 61K BTU vs. 93KBTU
- Temps dropped to -12 and -15° F.

System Design: Control Board

- Controls operations
- Stage control
- Blower Motor Speed
- Blower Motor On/Off time
- Dipswitches
- Menu options push button
- Low voltage wiring

System Design: Dip Switches

- Used by some manufacturers
- Dip Switch settings control various operations

System Design: Dip Switches

- Can change auto switch to 2nd stage
- (or not)
- Varies by manufacturer
- One has 60 minutes

RECOMMENDED TESTS IN THE FIELD

• Temp Rise (in proper location!)

Temp Rise – Location Matters

- Varies greatly on location
- Is everyone in the same location?
- Easy to hit 30 degree range

RECOMMENDED TESTS IN THE FIELD

Total External Static Pressure
 (TESP)

Total External Static Pressure - Nameplate

- Often 0.5" w.c
- Can be 0.8" wc
- For Mobile Homes 0.3" wc

Total External Static Pressure: Tools Needed to Measure

- Step drill bit
- Static Pressure Probe w/magnet
- Manometer
- Plugs or aluminum tape

Testing Total External Static Pressure: The Basics

- We drill *"TEST PORTS"*
 - We do not drill "holes"
- Use a step drill bit
 - Not a regular bit
- TESP readings help us:
 - ✓ Troubleshooting distribution issues
 - ✓ Measure air flow
 - ✓ Compare with manufacturer rated

TESP Test Ports Location (4)

- 1. Before Filter
- 2. After Filter& before blower
- 3. After heat exchanger& before the AC coil
- 4. After AC coil

Static Pressure Example #1

- I. Pressure drop across filter
 - I. -Red to Green = subtract
 - II. 59-25=34
 - III. "Budget" = 10
- II. Pressure drop across ac coil
 - I. -Red to Green = subtract
 - II. 34-21=13
 - III. "Budget" = 20

III. TESP

- I. Green to Green = add
- II. 59+34=93
- III. Manufacturer's Specs = 50

Static Pressure Example – Using Whole Numbers

TESP Rated = .50"	Before Filter	After Filter	Before AC	After AC
Static Pressure	.25" w.c.	.59" w.c.	.34" w.c.	.21" w.c.
Pressure Drop Filter & AC	59 – 25 = <mark>34</mark>		34 – 21 = 13	
Pressure Drop recommended	20% of TESP = 10		40% of TESP = 20	
TESP Total		59 + 34 = <mark>93</mark>		
Manufacturer TESP recommended		50		

How does an Upgrade to High Efficiency impact Static Pressure and Desired Flow?

System Efficiency (Type)	Input BTUs	Output BTUs	Desired Flow CFM	Static Pressure Inches of water column		
Existing natural draft	80,000	64,000	640	.60		
Two Scenarios for New Installation						
High Efficiency Condensing 96%	60,000	56,000	840	.79		
High Efficiency Condensing 96%	45,000	43,200	648	.61		

Note: Typically rated at 0.50" wc

How Much Pressure is "too much"?

Who	Recommended or desired	Action needed
Manufacturer	*0.5" typically	Great, nothing needed
Contractors	0.5" to 0.75"	Not great but acceptable
Contractors/ Manufacturers	0.75" to 1.0"	Bad, consider tweaking if possible
Contractors/ Manufacturers	Over 1.0"	Very bad, need corrective action, educate contractor

What if Filter Rack is directly against Furnace Cabinet?

• Drill into side of the cabinet

 Static Pressure Probe towards ductwork

What if AC Coil is installed directly on top of Furnace Cabinet?

- Drill into cabinet
- About 1" below top for supply side reading
- Above is AC drain pan
- Static Pressure Probe points into air flow

Test port

New Installations provide free space

 New furnaces are often shorter which creates a "free space" for supply side reading

HINTS FOR STATIC PRESSURE CONVERSATIONS

- Use whole numbers, not "inches of water column"
- 0.50 inches of water column = 50
- Compare to blood pressure
- High numbers are bad, restrictive
- Drill test ports, not "holes"

High Static Pressure = lower system air flow

- Restrictions can negatively impact operation
- Filters, coils, elbows, etc. all add restriction

Common Causes of high pressure on SUPPLY side

- Restricted ductwork
- Plugged coils
- Transitions in ductwork
 - Changes in size
 - Round to rectangular

Common Causes of **High Static** on the Supply Side

coil

Common Causes of High Static on the Return Side

Short on RETURN – most common

- Owner added new floor
- Covered up return registers
- Testing showed a RETURN issue
- Return reading
 - With filter .86" wc
 - W/out filter .71" wc
- Supply reading
 - .21
 - New furnace installed

Which Filter is Right?

Varying units of filtration (and restriction)

RECOMMENDED TESTS IN THE FIELD

- Measuring Air Flow (CFM)
- Extremely valuable info
- Never Rarely done
- The Next Frontier

TESP and Fan Curve Chart

TESP	Rating	Comments
Overall Value	*****	Cost-effective method, provides good measurement on new clean systems with proper OEM chart. Is not accurate if system is dirty.
ACCA 310	Yes	Recognized by ANSI/ACCA/RESNET
Residential Accuracy	*****	Good accuracy if using a Magnehelic on new systems with right OEM table. Per 310: Accuracy of \pm 1% of the reading or \pm 0.25 Pa (0.001 inH2O) required for manometer, whichever is greater.
Consistency	★★★☆☆	Inconsistent readings if condition of equipment is not clean (matching the OEM table).
Equip. Cost	\$\$	Cost-effective, can start very low (<\$100, to about \$600)
Time (Min)	5 to 10	Process is straightforward. NCI is a good resource for this method.

Meets Standard 310

Does not meet Standard

Correlation between Static and Fan Settings

G51MP-	I8C-090	PERFOR	MANCE	Less Filt	ler)							
Externa	Static				Air	Volume	/ Watts at 0	ifferent B	lower Spe	ods	000	
Pres	sure		High		Ma	dium-Hi	gh	N	ledium-La	ww	1	Low
in.w.g.	Pa	cfm	L/s	Watts	(cfm)	L/s	Watts	cfm	L/s	Watts	cfm	L/s
0.00	0	2180	1030	930	1835	865	790	1520	715	630	1280	605
0.10	25	2135	1005	885	1825	860	750	1510	710	610	1275	600
0.20	50	2085	985	840	1810	855	720	1505	710	580	1270	600
0.30	75	2030	965	800	1775	835	685	1500	705	565	1265	595
0.40	100	1940	915	760	1205	820	650	1480	700	635	1250	590
0.50	125	1005	600	725	1660	785	600	1430	675	505	1215	575
0.60	150	1740	820	670	1590	750	575	1380	650	475	1175	555
0.70	175	1645	775	640	1475	695	520	1290	610	450	1105	520
0.80	200	1540	725	600	1340	630	465	1175	555	405	1020	480
0.90	225	1335	630	540	1170	555	440	1070	505	375	950	450

NOTES - All air data is measured external to unit without litter (not furnished - field provided).

Air volume based on bottom air return air. Actual air volume may vary on side return air applications.

Example from Manufacturer

To determine total external duct static pressure, proceed as follows:

- With clean filters in the furnace, use a manometer to measure the static pressure of the return duct at the inlet of the furnace. (Negative Pressure)
- 2. Measure the static pressure of the supply duct. (Positive Pressure)
- The difference between the two numbers is .4" w.c. Example:

static reading from return duct = -.1" w.c. static reading from supply duct = .3" w.c. total external static pressure on this system = .4" w.c.

TESP and Manufacturer Fan Curve Chart

- Advantages:
 - Low cost
 - Only need pressure gauge and fan curve chart
 - Quick and easy (if table available)
 - Can be good for troubleshooting
- Disadvantages:
 - Accuracy can be dramatically impacted by conditions (dirty blowers, coils, filters, etc.)
 - Not reliable for existing equipment
 - Can't always find curve table

Hot Wire Anenometer

- Advantages
 - Easy to use
 - Does the math for you
- Disadvantages
 - Needs long straight ductwork to stabilize air
 - Cost of equipment

Digital True Flow Tool

- Advantages
 - Uses four static pressure data points
 - Digital with Bluetooth connection
 - Accurate measurement
 - WX agencies already have digital gauge
- Disadvantage
 - Cost
 - Must buy equipment

Digital True Flow tool 1 minute, 33 seconds

<u>TEC Digital TrueFlow Solution</u>
<u>Overview - YouTube</u>

CASE STUDIES – Real World Testing

 What is the best way to VERIFY the calculated Manual J estimates?

Condensing 90%+ to Condensing 96%

- 1300 sq.ft. (w/bsmt) Built in 1917
- Attic, walls, bsmt and crawl insulated
- Kitchen remodeled
- Furnace 15 years old, red tagged

	Existing	Installed	Manual J calc
Input	80K	42K / 60K	54,473 BTUs
Output	74K	38K / 58K	
TESP 1 st		.77″	
TESP 2 nd		1.5″	Set to 1 st stage only
Rated		0.5″	Survived -15 F

Second stage not needed or used

New 2-stage Condensing 90%

- 700~ sq.ft. 2 story Built in 2000~
- Habitat for Humanity home, 2" x 6" walls (not 2x4)
- Twin Home, no heat loss on one full side

	Existing	Installed	Manual J calc
Input		39K / 56	5K 41K BTUs/hr
Output		38K / 54	K Contractor went with next largest size
TESP 1 st		.94"	Loud, set at 1 st stage only
TESP 2 nd		1.15″	Survived -15 F
Rated		0.5″	Still high static

MH 80% to 2-stage Condensing 90%

 870~ sq.ft. Built in 1978, original furnace, design temp -24 F

h

F

р

n

g

	Existing	Installed	Manual J calc
Input	80K	47K / 72K	"not needed"
Output	64K	45K / 69K	**35K CoolCalc
TESP 1 st	.41″	.84″ 3X	Loud!!
TESP 2 nd		1.39″ 4.6X!	Recommend 1 st stage only
Rated	0.3″	0.3″	Plus reduce blower speed

110

**CoolCalc not designed for Mobile Home Manual J

Mobile Home 2-stage Condensing 90%

110

• 914~ sq.ft. Built in 1984, design temp -28 F

h

e

р

n

g

	Existing	Installed	Manual J calc
Input	70K	39K / 60K	"not needed"
Output	56K	37K / 58K	52,590 BTUs Coolcalc
TESP 1 st		.49"	Loud!!
TESP 2 nd		.87″	Recommend 1 st stage only
Rated	0.3″	0.3″	Plus Clean and Tune

Draft-assisted 80% to 2-stage Condensing 90%

- 700~ sq.ft. Built in 1920~
- Furnace 21 years old
- Crazy loud on 2nd stage

	Existing	Installed	Manual J calc
Input	80K	42K / 60K	45K BTUs Contractor estimate
Output	64K	40K / 58K	5K BTUs Difference
TESP 1 st	.78″	.77″	Contractor went to next larger size to cover
TESP 2 nd	n/a	1.5" 3X over!	Set on 1 st stage for 60 min
Rated	0.5″	0.5″	Tested at -15 degree F

Draft-assisted 80% to 2-stage Condensing 90%

• 1,500~ sq.ft. 1992 built 2" x 6" walls, tight, 5-level home

	1 st install	2 nd install	Manual J calc
Input	100K	29K / 42K	67K BTUs Contractor estimate
Output	80K	28K / 40K	No 2nd stage fired
TESP 1 st	n/a	.53″	No 2 nd stage needed
TESP 2 nd	.99	no 2 nd Stage	Tested at -15 degree F
Rated	0.5″	0.1" / 0.9"	<u>Contractor had to install two furnaces</u>

CONCLUSIONS

Now what? Start installing more Appropriately sized **Furnaces**

CONCLUSIONS

Did you hear that? Stop installing oversized Furnaces!
Recommended Testing - in the field

- Verify ductwork size and condition (look at it)
- Listen to it (under returned can be heard)
- Especially return, commonly under sized
- Make sure dampers are open
- Add static pressure testing to standardized tests
- Add air flow testing to your in-field testing

Recommended Additions for Inspections

- Add static pressure testing to standardized tests
- Add air flow testing to your in-field testing
- Learn about furnace control boards
- Learn how to tweak the installation (if needed)
- Can be done for both existing and new installs

• Get training – manufacturer or HVAC testing

Recommended changes in the office

- If a weatherization program, provide the size to the contractor
- **When replacing, require the contractor supply you with:
 - Age, Input/output, Efficiency of existing
 - With condensing, NEVER install same size
- Compare that with what is being proposed
- <u>Scrutinize</u> the Manual J for accuracy
- Perform a Manual J on CoolCalc for comparison only
- When close, error on the smaller size (don't be afraid)

Common Manual J errors to check

- 2" x 6" wall construction, contractor uses 2" x 4"
- Square footage (verify by auditor, Google Maps, CoolCalc)
- Furnace proposed is higher efficiency but same size as old one
- Basement given same weight as above grade
- Bigger is <u>not</u> better
- Smaller size will likely heat home with less problems

Questions?