Achieving Net Zero Carbon Designation for Builders

NET ZERO CARBON BUILDING PROFESSIONAL

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 code/energy hours** of credit toward **Building Officials and Residential Contractors** continuing education requirements."

For additional continuing education approvals, please see the continuing education credit section in the conference agenda booklet.

Thank You to Our Sponsor

THINK NOOD ®

SILB SOFTWOOD LUMBER BOARD

Agenda

- The compelling trend beyond an energy focus to a zero carbon imperative
- Introduction to Operational and Embodied Carbon
 - A case study contrasting an energy rating versus carbon accounting
- Carbon Accounting Metrics and Tools
- Design and Material Selection Opportunities to Optimize Carbon Reductions
- Next Steps for designers and builders

Who's here and What would you like to talk about??

The Energy Focus

Since the 1970's

Reduce the reliance on foreign energy

Reduce waste

- Research
- Voluntary programs such as ENERGY STAR
- Manufacturer innovations
- Code and Standards
 improvements

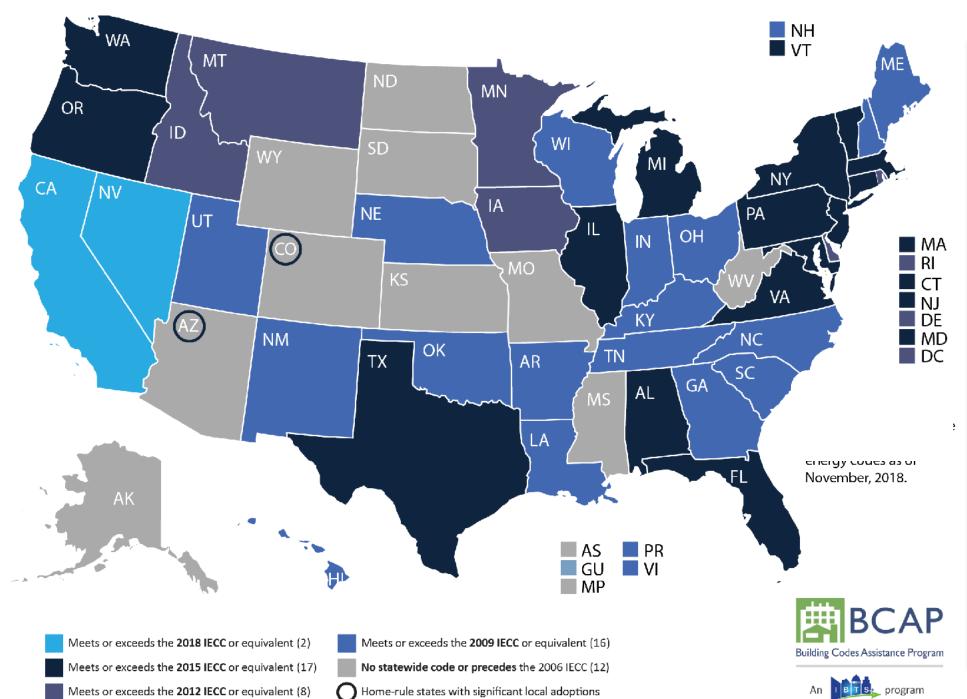
The Energy Focus

million British thermal units 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 U.S. average Northeast Midwest South West 2015 2001 1980 1990

Energy consumption per household, U.S. average and by census region in selected years

Data source: U.S. Energy Information Administration, *Residential Energy Consumption Survey* for indicated years Note: Excludes losses in electricity generation and delivery, and consumption of wood fuels.

Since 1980


 \equiv

A 34% reduction per household Despite houses getting bigger

Residential Code Adoption as of March 2022

The Energy Focus - Appliances improved

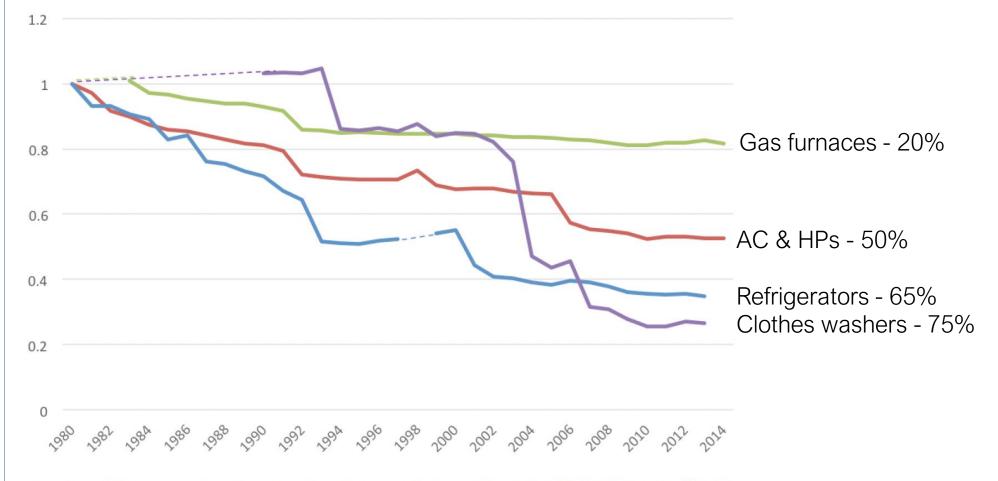
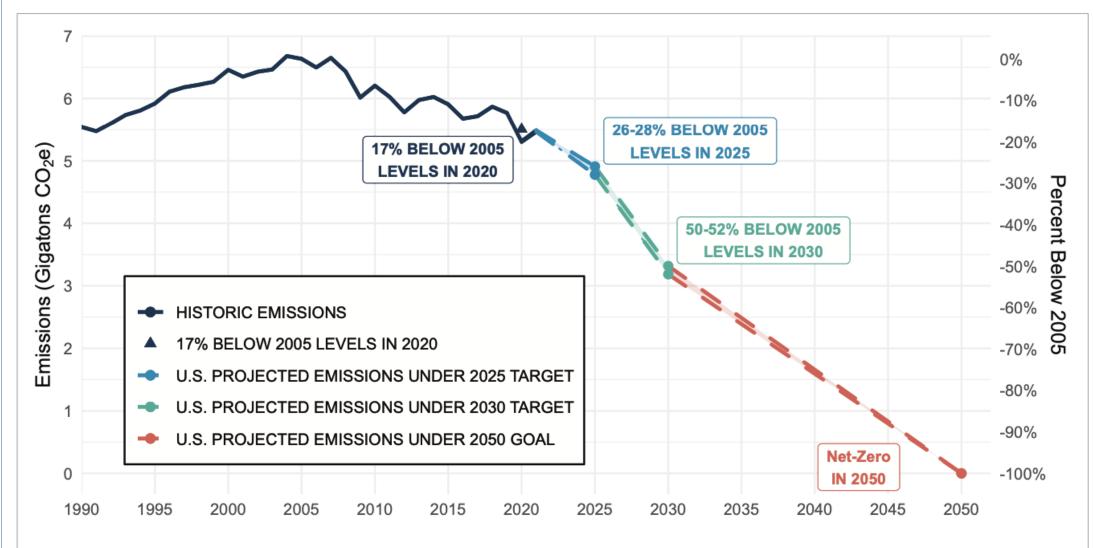
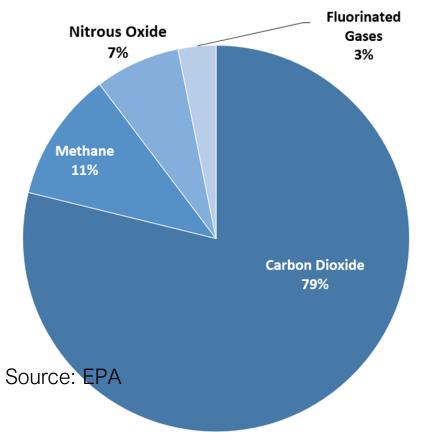



Figure 5. Relative average energy consumption of new appliances sold over the 1980–2014 period (2014 r data not yet available). *Source:* ACEEE analysis of data from Air-Conditioning and Refrigeration Institute, As Manufacturers, Lawrence Berkeley National Laboratory, and confidential industry sources.

The New Imperative - Greenhouse Gas Emissions

Zero by 2050

The Challenge - There is still an affordable housing crisis

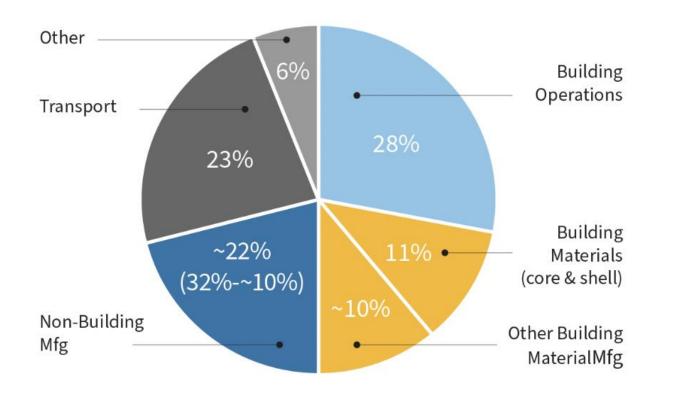

WHY IS IT IMPORTANT?

The built environment is growing at a record pace in the United States. In just one sector, it is estimated that 2.5 million new housing units are needed to make up for the nation's housing shortage.¹⁰ To reduce the GHG emissions associated with that construction, communities need to act now to create embodied carbon strategies that reduce environment impacts from buildings we'll use well into the future.

Greenhouse Gas Fundamentals

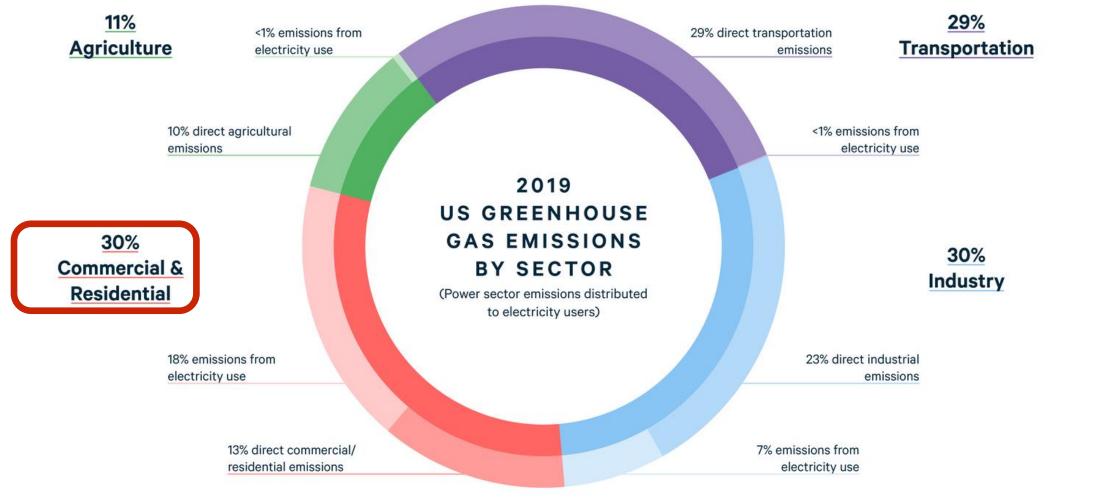
Overview of U.S. Greenhouse Gas Emissions in 2020

- Gases that "trap" heat in the upper atmosphere.
- Producing, processing and burning of fossil fuels is most significant
- Chemical and agricultural processes are a significant source
- Carbon dioxide can be absorbed and sequestered.
 - Forests and bio-based building products for example
- Each gas has a Global Warming Potential (GWP)
- GWP is often expressed as a comparison to 1 ton of CO₂.


In this workshop we will use Carbon Dioxide Equivalents (CO₂e) in all calculations and exercises Kg and Tonnes

The New Imperative - Greenhouse Gas Emissions

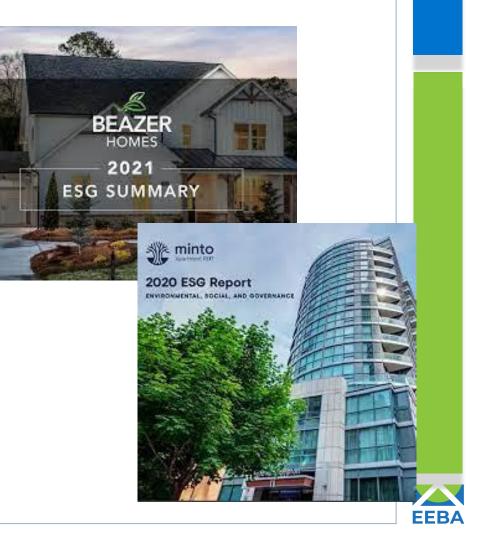
Global CO₂ Emissions by Sector


Buildings are a significant opportunity for meeting global targets

> Operations + Construction

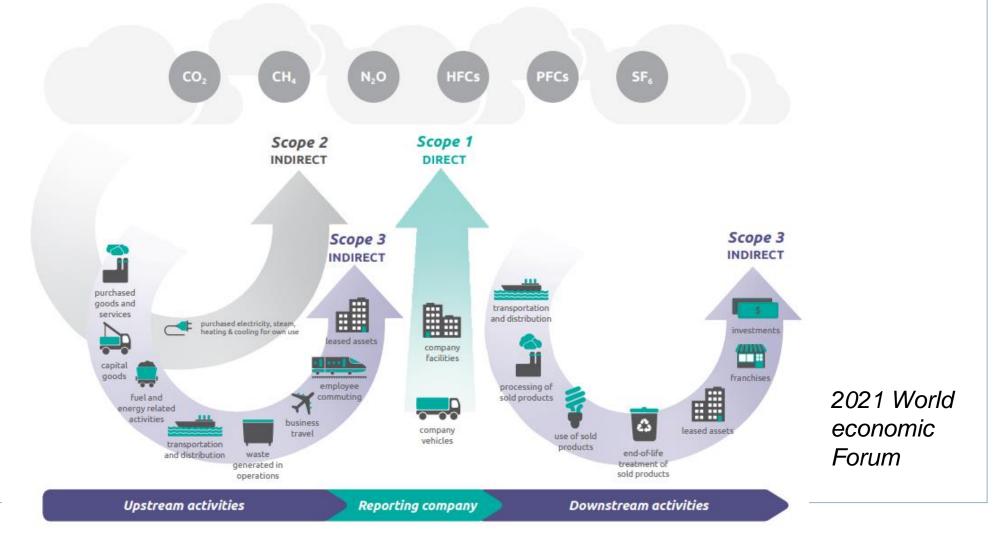
Adapted from 2019 Global Status Report, Global Alliance for Building and Construction (GABC) and Architecture 2030.

The New Imperative - U.S. Greenhouse Gas Emissions


EEBA

Builder & Developer

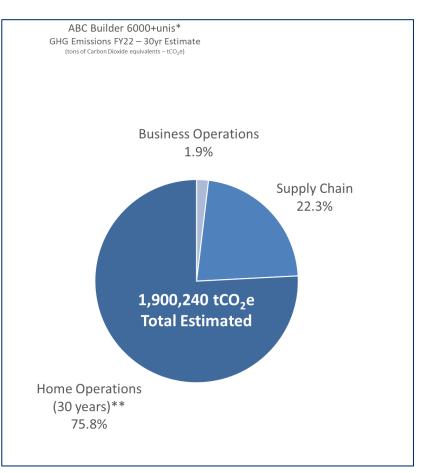
Environmental Social Governance **ESG** Reporting Finance Applications & Development Approvals


"No Longer Just a One-Off Trend To be sure, Meritage is hardly alone as an ESG-focused home builder anymore. Visit the websites of industry stalwarts such as Beazer Homes, Century Communities, D.R. Horton, K. Hovnanian, KB Home, LGI Homes, Taylor Morrison, Toll Brothers, and Tri Pointe Homes, and you'll see a section on ESG highlighted either directly from the homepage or on the investor relations page " Builder Mag April 2022

Of the largest Homebuilders in the US, 8 of 10 are now producing ESG or Carbon Benchmarking Reports

Emissions Scope 1,2,3 – What does this mean for Homebuilding

Figure [5.2] Overview of GHG Protocol scopes and emissions across the value chain



EEBA

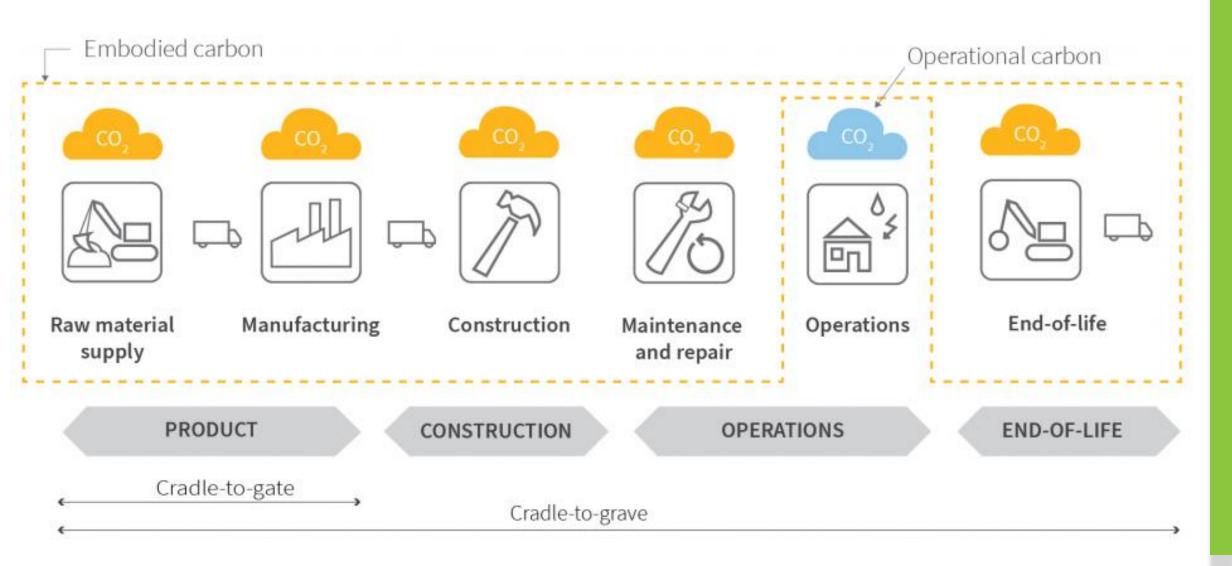
Emissions Scope 1,2,3 – What does this mean for Homebuilding

		Business Operations			
Scope 1 - 🥤	Scope 1	Natural Gas			
Direct Control 🗎		Fleet Fuel			
Scope 2 - 🥤	Scope 2	Electricity			
Indirect Control		Steam (66 Wellington ONLY)			
	Scope 3a	Air Travel			
		Hotels			
		Car Rentals			
		Employee Commute			
		Supply Chain			
Scope 3 -	Scope 3b	Purchased Goods & Services			
All Other Emissions		Energy Related Activities			
		Transportation & Distribution			
		Waste & Recycling			
		Home Operations			
	Scope 3c	Natural Gas – Heating			
		Electricity – Heating/ Cooling/ Plug Loads			

Estimate for FY22 based on FY20 results and estimates for Supply Chain and Home Operations

Carbon Emissions

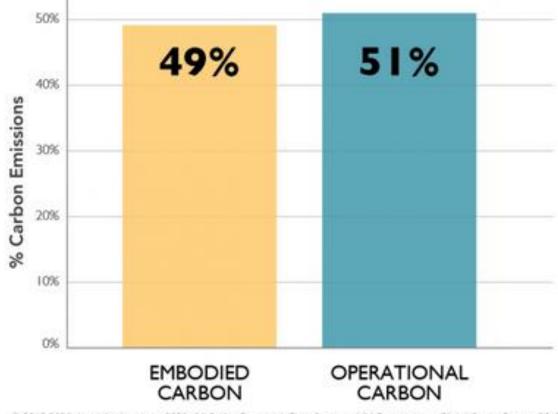
'Upfront' Embodied Carbon


Manufacturing, transportation, and installation of construction materials

Operational Carbon

Building energy consumption

Building Lifecycle



Chris Magwood, MAsc http://endeavourcentre.org/

Embodied Carbon vs Operational Carbon Total Carbon Emissions of Global New Construction from 2020-2050 Business as Usual Projection

© 2018 2030. Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017: EIA International Energy Outlook 2017

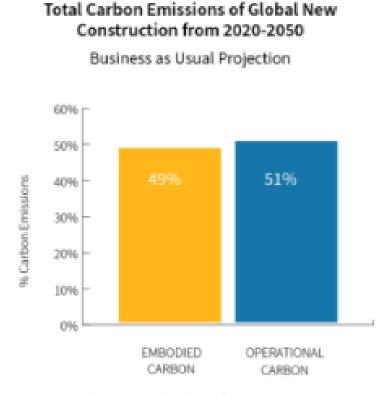
innovative learning, building & living

Chris Magwood, MAsc http://endeavourcentre.org/

Low-Rise Buildings as a Climate Change Solution

2019

Energy vs Carbon : The choices are complex


Embodied Carbon

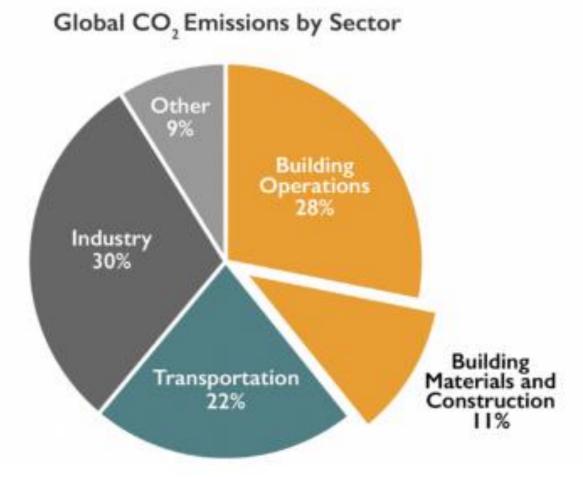
- Passive Homes/ Net Zero Energy homes(Lots of insulation material), <u>may</u> need to operate for 100+ years to offset embodied energy of materials(concrete, insulation, etc)
- Organic Cotton bag may need to be used 20,000 times to be an improvement over a plastic, single use bag
- Stainless steel water bottles embodied carbon is 14x greater than single use plastic bottle

FFR/

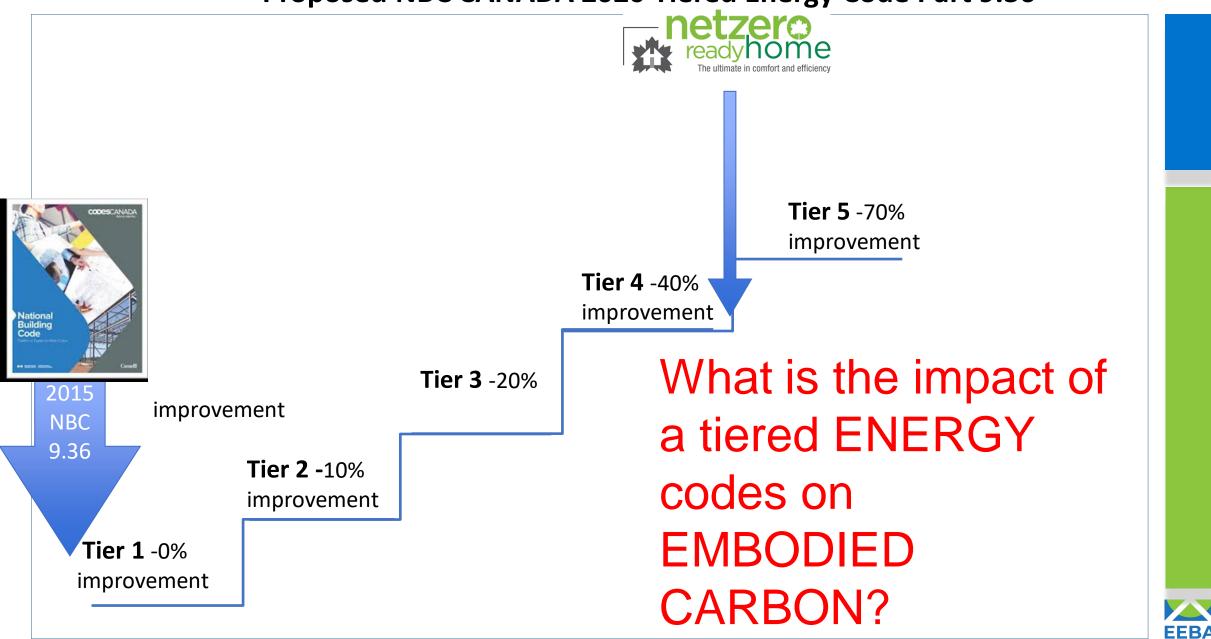
Why Embodied Carbon is focused in Construction:

© 2018 2030, Inc. / Architecture 2030. All Fights Reserved. Data Sources: UN Environment Global Status Report 2017, EA International Energy Outlook 2017 The world's building stock is expected to double by 2060 — that's equivalent to adding an entire New York City to the planet every month for the next 40 years.

This is good news for home builders. However, without some changes in how we produce buildings, it's bad news for climate change and carbon emissions.


Cement — a key ingredient that gives concrete its strength — is also one of the largest emitters of CO2 in the built environment.

Embodied carbon is expected to account for nearly 50% of the overall carbon footprint of new construction between now and 2050.


Annually, embodied carbon is responsible 11% of global GHG emissions and 28% of global building sector emissions.

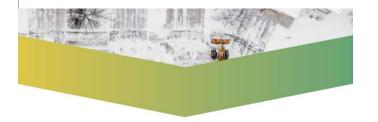
The embodied carbon emissions of building products and construction represent a significant portion global emissions: concrete, iron, and steel alone produce ~9% of annual global GHG emissions; embodied carbon emissions from the building sector produce 11% of annual global GHG emissions.

Proposed NBC CANADA 2020 Tiered Energy Code Part 9.36

Energy vs Carbon : The choices are complex

The increase of 93 kg CO₂e/m² in MCE between Tier 3 to Tier 5 for the high carbon material selection (HCM) model presents a cautionary warning that the pursuit of energy efficiency without consideration of material emissions can cause dramatic increases in overall emissions.

Achieving Real Net-Zero Emission Homes:


Embodied carbon scenario analysis of the upper tiers of performance in the 2020 Canadian National Building Code

Natural Resources Canada CLIMATE ACTION

https://www.buildersforclimateaction.org/report---embarc-report.html

Energy vs Carbon : The choices are complex

Achieving Real Net-Zero Emission Homes:

Embodied carbon scenario analysis of the upper tiers of performance in the 2020 Canadian National Building Code

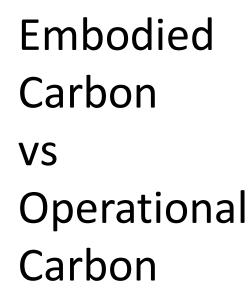
LIMATE

CTION

Natural Resources Canada "In 2021, Natural Resources Canada (NRCan) released the report "Achieving Real Net Zero Emission Homes " establishing that material carbon emissions (MCE) for new homes will outweigh operational carbon emissions (OCE) for electrified homes using relatively clean electrical grids such as that in the Greater Toronto and Hamilton Area (GTHA) for almost 120 years.

At the highest levels of energy efficiency proposed by codes, this imbalance extends to <u>166 years of OCE to equal MCE</u>"

https://www.buildersforclimateaction.org/report---embarc-report.html



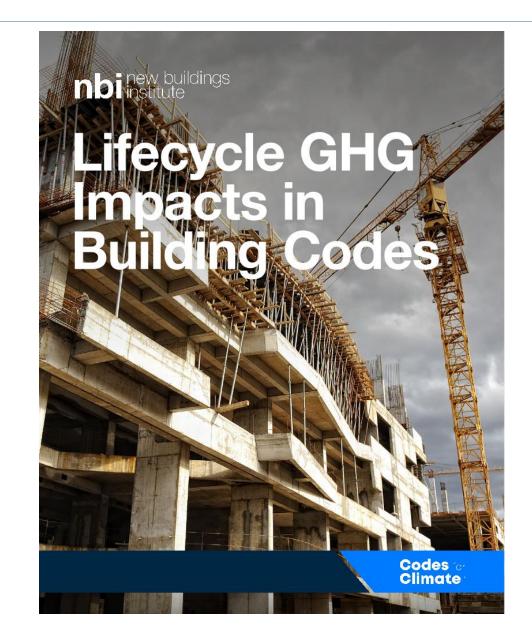
A house is a 30 year product with emissions

Chris Magwood, MAsc http://endeavourcentre.org/

Total Carbon Emissions of Global New Construction from 2020-2050 Business as Usual Projection

© 2019 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

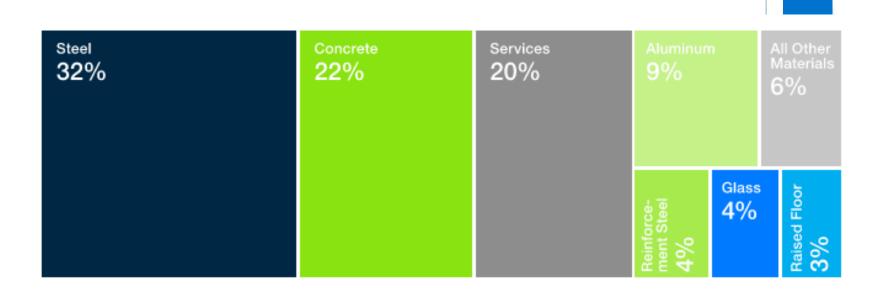
WHY Embodied Carbon BECOMES MORE IMPORTANT WITH TIME Building Sector CO₂ Emissions New Construction: 2015-2050 10055 Embodied carbon **Building Materials** 90% (materials) 00% Carbon Emissions Time 60% Operating carbon 4055 ы¢ (energy) 20% Total carbon Figure 1. Growing importance of embodied carbon as 075 Building Materials Building Operations building operational energy decarbonizes Insuran (2003) 2000, Inc. J. Andrew Laws 2000, All Rights Reserved. have been yet the particle distance being 43600 participant distance instrume Scenario assumes decarbonization of grid-energy.....But we need to know what THAT(decarbonisation of grid) means for our future.



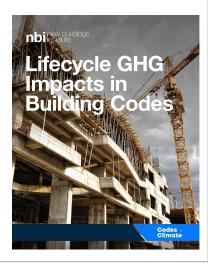
PRIMARY AUTHORS

Webly Bowles, AIA, Project Manager, New Buildings Institute Kim Cheslak, Director of Code, New Buildings Institute Jim Edelson, Director of Policy, New Buildings Institute

CONTRIBUTORS


Bruce King, PE, Director, Ecological Building Network Anish Tilak, RA, Manager—Carbon Free Buildings, RMI Meghan Lewis, Senior Researcher, Carbon Leadership Forum

Carbon Emission Benchmarking is first step.


Carbon Emission Reduction is step 2.

Building operations and construction are responsible for approximately

> **39%** of humanity's global greenhouse gas (GHG) emissions

For Low Rise Residential the picture is a little different ...

Benchmarking Report

Establishing the Average Upfront Material Carbon Emissions in New Low-Rise Residential Home Construction in the City of Nelson & the City of Castlegar

Prepared for

Meeri Durand, Manager of Planning, Development & Sustainability, City of Castlegar Sam Ellison, Senior Building Inspector, City of Nelson

Prepared by

Chris Magwood, Director, Builders for Climate Action Erik Bowden, Embodied Carbon Analyst, Builders for Climate Action Eve Treadaway, Research Assistant, Builders for Climate Action Javaria Ahmad, Sustainability Analyst, Builders for Climate Action Michele Deluca, Registered Energy Advisor, 3West Building Energy Consultants Natalie Douglas, Embodied Carbon Pilot Coordinator, City of Nelson

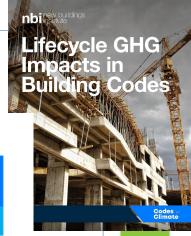

Concrete 346.9 tCO ₂ e 35.5%	Cladding 122.6 tCO ₂ e 12.5%	Interior Surfaces 119.6 tCO ₂ e 12.2%	
	Windows 111.0 tCO ₂ e 11.3%		Roofing 23.9 tCO ₂ e <mark>2.4%</mark>
Insulation 149.7 tCO ₂ e 15.3%	Framing 103.7 tCO ₂ e 10.6%		Structural Elements 0.5 tCO ₂ e >0.1%

Figure 5. This tree chart illustrates which materials contributed the most amount of overall emissions across all 34 case study homes.

TABLE B: MATERIAL MAPPING OF BUILDING CODES

	Building Code	Residential Code	Mechanical Code	Plumbing Code	Electrical Code	Green Code	Energy Code
Primary Syste	ms						
	Structural, envelope	All	Air supply, distribution, conditioning	Water supply, disposal, hot water	Electrical service, wiring, and systems	Site, Materials, Energy, IAQ,	
Materials Cov	ered						
Concrete	Х	Х	Х	Х		Х	
Steel	Х	Х	Х	Х			
Glass	Х	Х					
Aluminum	Х		Х				
Wood	Х	Х					
Copper			Х	Х	Х		
Plastic	Х	Х	Х	Х			
Insulation	Х	Х	Х				
Refrigerants			Х			Х	

Carbon is coming to building codes AND to Home Performance Ratings

RESNET's New Carbon Rating Index

The Standar

litandard 'CO,e Rating Inde

<image/>	HERE SCORE 50	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	11	646		NDEX SO	
	HERS' Index	Energy Gauge				HERS' C	inbon ini
Image: State of the state	_					1	-
Notice of the second	Easting Test Int		-			Easting .	- 54
Market Star N <td< td=""><td>Parried in the</td><td></td><td>BODE -</td><td></td><td></td><td>Thereis a</td><td>1.1</td></td<>	Parried in the		BODE -			Thereis a	1.1
Marging of the second participation of the second partitipation of the second participation of the second parti							
And a	References and	104					and the second
And Respire See Standy	1000					A CONTRACTOR	-
Image: State of the second state of			84	41	86		
Image: State of the second state of							1 m 1
Image: State of the state o			-				
Image: State of the state							121
Aver Story 1 1 1 Aver Story 1 1 1 Story 1 1<			- 22				12
Device Strength Device Strength Dist Dist <thdist< th=""> Dist</thdist<>							- 21
Note of the second s						Anna Saman	10.
No may 1 Ye Kill 14' The second seco		CON (Revenue)	114	8.04	141	There are a	
Experience of the second secon	the local days in the local da	SOL (Ref.	1.00	4.00	104		and the second
Tel: P., Seld, SH(77), E. (V(17) Sauge Dig P., Sau Yamary Control Rase I.J. Humber Spectra Spectra 200 The large force large force beneric listeness for a file set at a second spectra base second to large beneric listeness forces The large force large force large beneric list forces at the file set at the second spectra base second to large beneric large beneric listeness forces		Tellin (Beg)	174	16.100	3.41		
Tel: P., Seld, Seld'S, R. P.C.T. Sugge Die P., Suge Lee P		Inspire of Constant and	-	and loss			
Conduct Name 12 Annual State S	and an entry second	and docting to					
The form form format functions to the format in section from a finite section for a finite section on the format format format format for a finite section f	THE PLANE AND TAKEN OF LONG THE	R. Cash Herniey				100	(main)
The form form format functions to the format in section format in the of these and the section states around to form format format.						10	12
The form form format functions to the format in section format in the of these and the section states around to form format format.	Cartefant Ramer All Name	w 1	and an			240	Alex.
Plana fare Design Detect 1975 Ceanate Asset, Comp. Plana 3060-0101 Plane (201) 818-440						18.	a land
	Planta Saver Dreige Dected J 7879 Crearing And	 Conna, Pravida 10802-07801 Priero 	10110-00	(0+++0)			22.24

Carbon is coming to building codes AND to Home Performance Ratings

The Standard:

Based on ANSI/RESNET/ICC 301 Standard "CO₂e Rating Index"

Provides a more accurate metric to measure emissions: addresses when energy is used, as well as how much of it is used

Uses hourly CO₂e emission rates and electricity generation emission projections as published by the National Renewable Energy Laboratory (NREL).

Combines these values

with the hourly energy

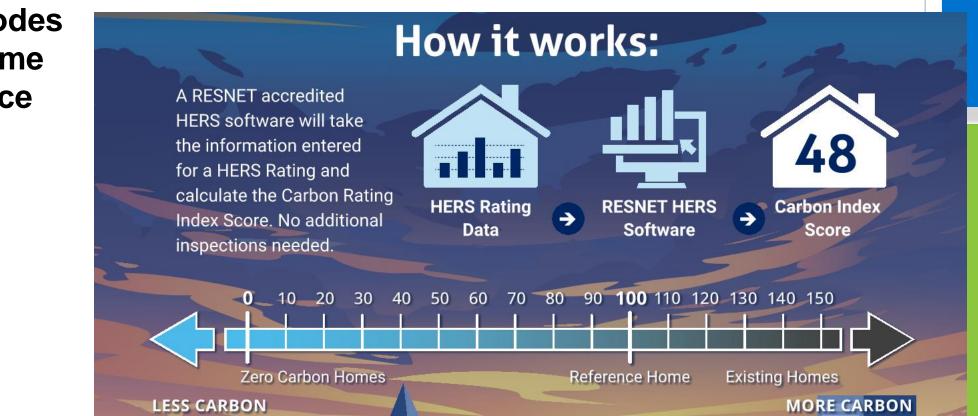
consumption given by

the calculation of the

HERS Index to provide

a new metric valuing

the carbon emissions


when energy is used.

How can it be used?

- ✓ Usable for local climate change initiatives
- ✓ Utility incentive programs
- ✓ Consumer awareness
- Can be used in Environmental, Social and Governance (ESG) reporting
- ✓ Can be a basis for green bonds

Carbon is coming to building codes AND to Home Performance Ratings

For more information, visit resnet.us/co2eindex

Carbon is coming to building codes AND to Home Performance Ratings

Are we ready for this ?

What can we do to prepare ?

GWP Global Warming Potential Carbon "equivalency"

GWP Global Warming Potential

Global Warming Potential (GWP) Factors

GWP factors depend on

- How much heat is trapped by 1 kg of the GHG (or some other unit of mass)
- How long the GHG persists in the atmosphere
- Time horizon over which the heat trapping is being considered (usually 100 years \rightarrow GWP100)

GWP Global Warming Potential

Greenhouse Gases Important for Buildings

There are thousands of GHGs; a few are **very important** in buildings:

- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)
- Fluorinated gases, such as hydrochlorofluorocarbons (HCFCs) – used as propellants (spraying) and refrigerants (for cooling systems)

E.g., R-134a (HFC-134a) - CF₃CH₂F - used in cooling

GWP Global Warming Potential

Some greenhouse gases (GHGs) trap more heat than others

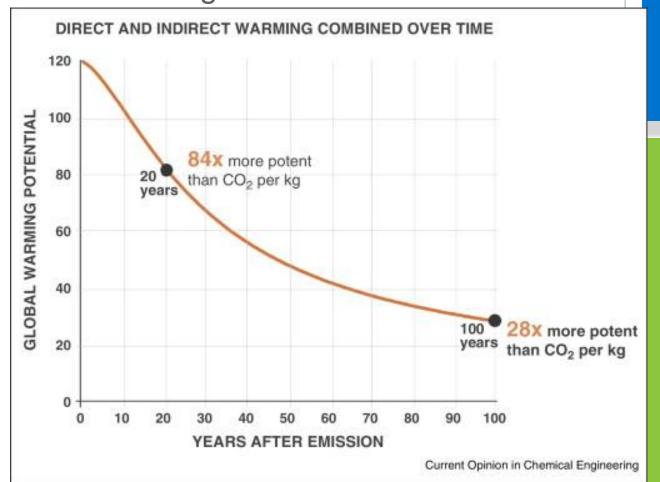
Global Warming Potential (GWP) Factors If 1 kg of methane (CH₄) is emitted, how much heat will be trapped compared to CO₂ over a 100-year timeframe?

This is the global warming potential (GWP100) of CH_4

- 1 kg of CH₄ is equivalent to 25 kg CO₂ over a 100-year time horizon*
 - For CH₄, GWP100 = 25 kgCO2e
- Sometimes called "characterization" or "emission" factors

<u>GHG</u>	GWP100* (kgCO2e/kg GHG)	
CO ₂	1	
CH ₄	25	
N ₂ O	298	
HCFC-22	1810	
SF ₆	22800	

* from TRACI 2.1, 2014


* Based on GWP100 from TRACI v2.1, 2014, USEPA

GWP Global Warming Potential

GWP Changes Over Time

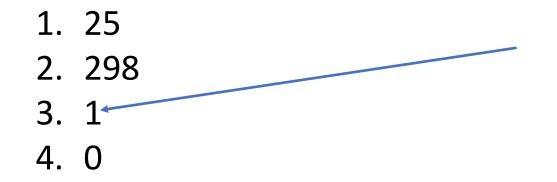
- Usually, shorter-term effects are greatest
- Most reports use 100 years (GWP100)
- GWP100 can vary from source to source depending on factors used in calculation and sometimes are updated with new findings

From Allen, D.T. 2014. Methane emissions from natural gas production and use: reconciling bottom-up and top-down measurements. *Cur Op Chem Eng* 5:78-83. <u>Link</u>

MATERIAL CARBON EMISSIONS : Understanding A base metric: GWP Global Warming Potential

GWP Factors are Used to Calculate CO₂ Equivalents

E.g., Kilograms of carbon dioxide equivalents (kgCO2e)


E.g., Tonnes of CO₂ equivalents (tCO2e)

- Can be calculated for any product or service
 - E.g., tCO2e of embodied carbon for construction of a residential home
 - E.g., kgCO2e for production of 1 kWh of electricity in a gas-fired power plant

TEST YOUR KNOWLEDGE

What is the GWP100 factor (Global Warming Potential -100 years) of CO2 ?

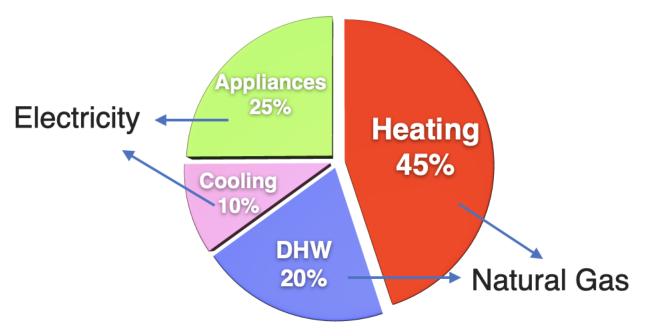
Achieving Net Zero Carbon Designation for Builders

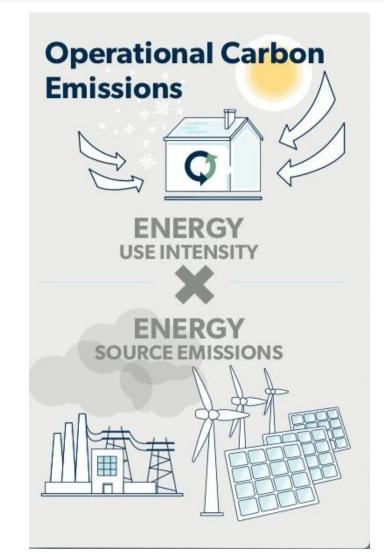
NET ZERO CARBON BUILDING PROFESSIONAL

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

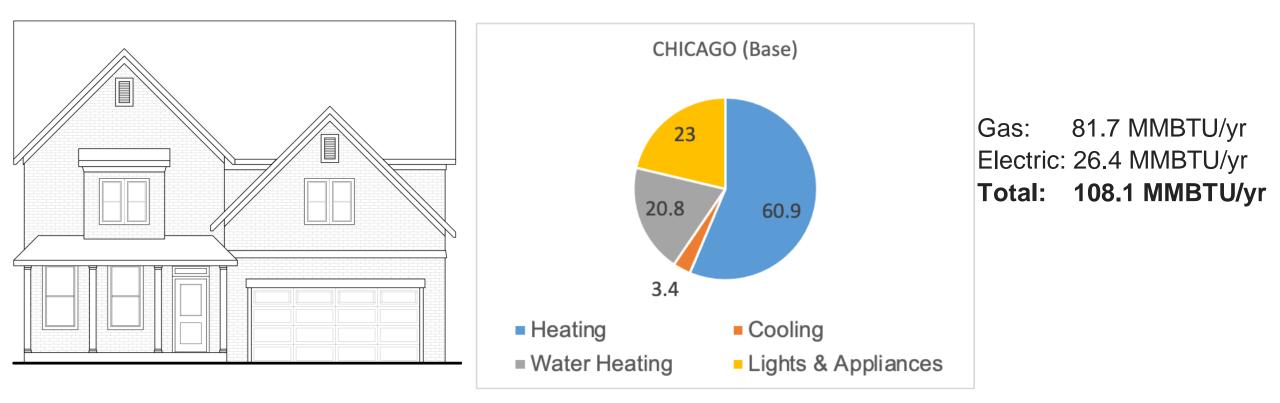
"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 code/energy hours** of credit toward **Building Officials and Residential Contractors** continuing education requirements."

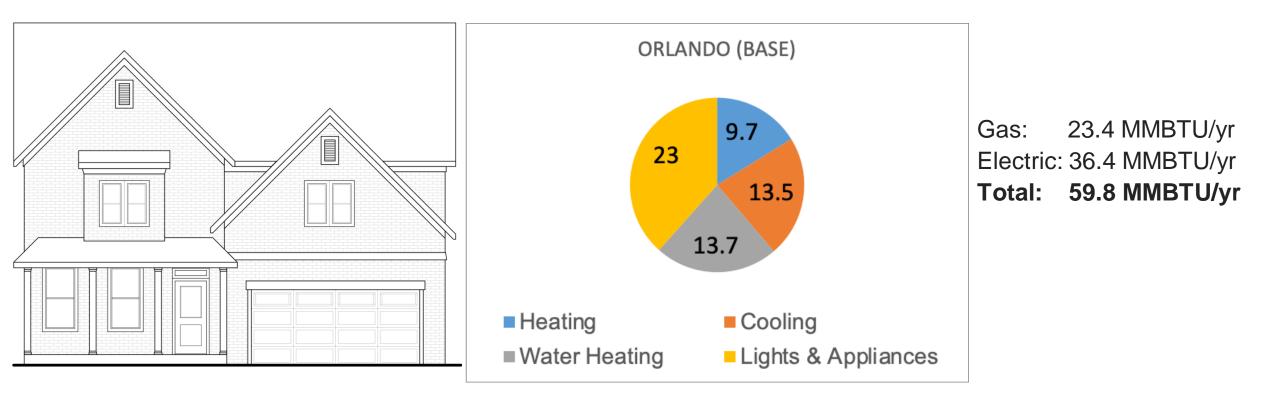
For additional continuing education approvals, please see the continuing education credit section in the conference agenda booklet.



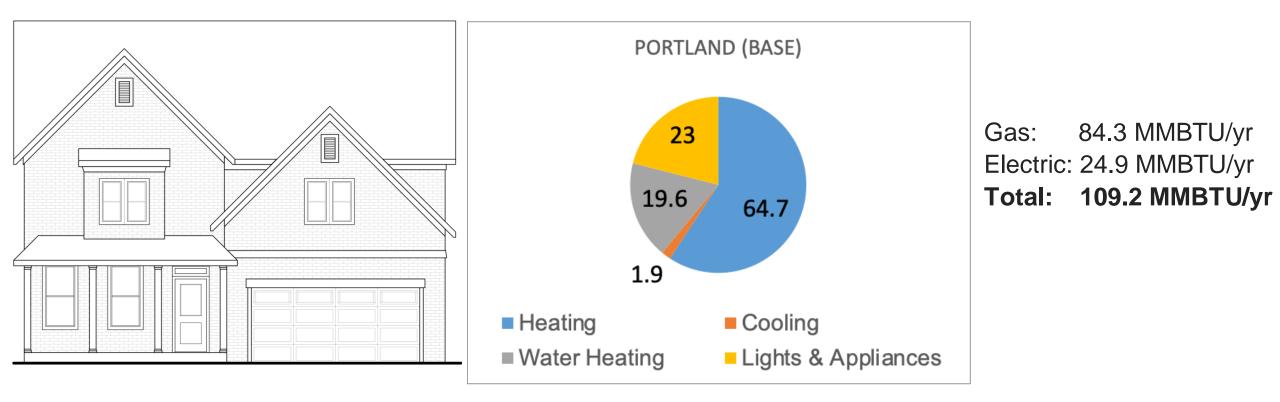

Operational Carbon

Operational Carbon

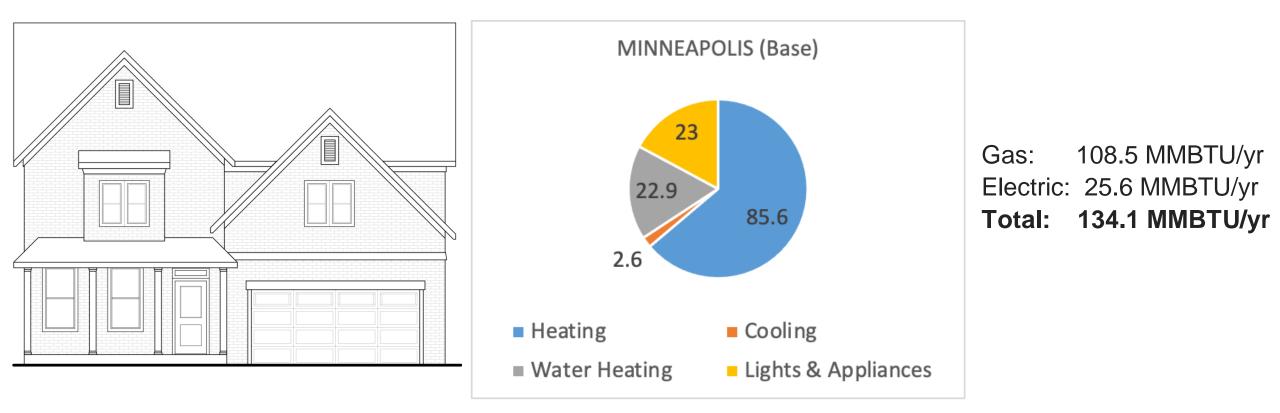

- A function of energy use:
- Annual energy consumption
- Fuel / energy choice
- Emissions in generating the energy


Energy Use in Homes - EEBA Carbon House - Chicago

Energy Use from Your Energy Rater


Energy Use in Homes - EEBA Carbon House - Orlando

Energy Use from Your Energy Rater


Energy Use in Homes - EEBA Carbon House - Portland

Energy Use from Your Energy Rater

Energy Use in Homes - EEBA Carbon House - Minneapolis

Energy Use from Your Energy Rater

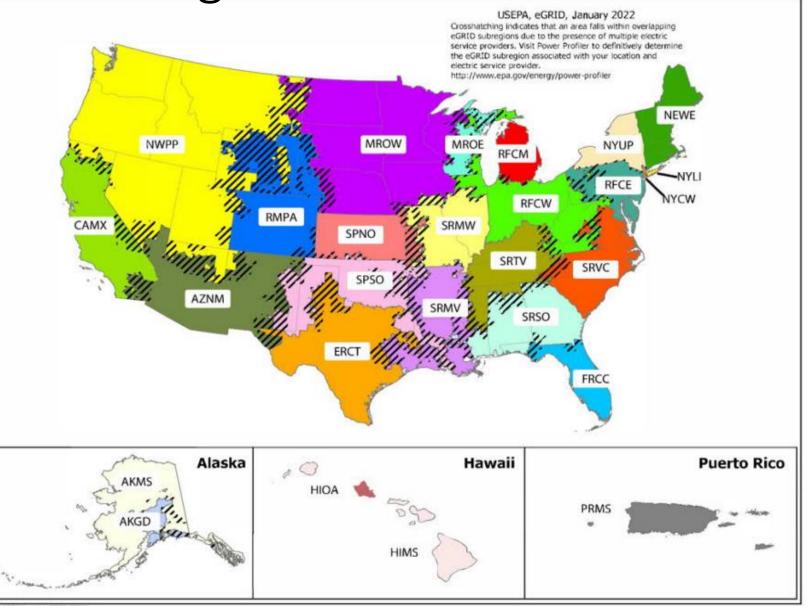
Emissions from electrical generation

They vary significantly:

Coal

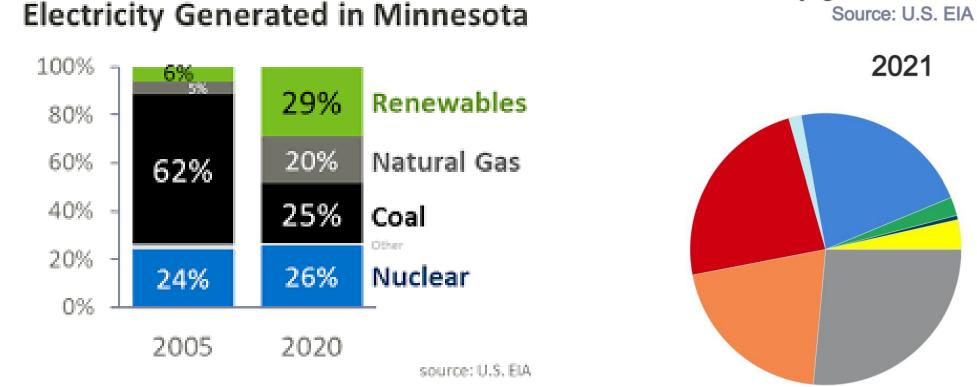
Diesel

Natural gas

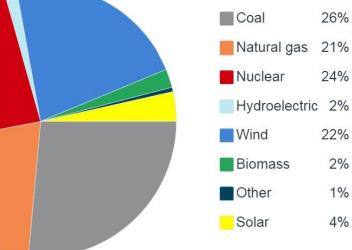

Nuclear

Hydro-electric

Wind


Solar

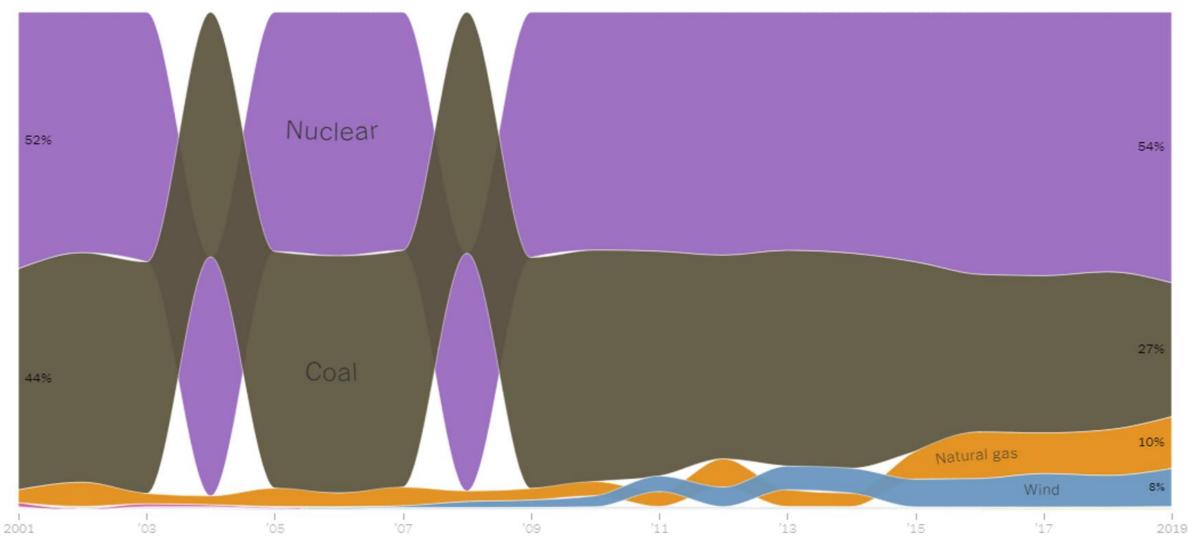
Every utility has different emission factors



https://www.epa.gov/system/files/documents/2022-04/ghg_emission_factors_hub.pdf

Emissions from electrical generation

Electricity generated in Minnesota


https://www.epa.gov/system/files/documents/2022-04/ghg_emission_factors_hub.pdf

Every utility has different emission factors

How Illinois generated electricity from 2001 to 2019

Percentage of power produced from each energy source

https://www.nytimes.com/interactive/2020/10/28/climate/how-electricity-generation-changed-in-your-state-election.html

Every utility has different emission factors

Electricity

	Total Output Emission Factors			
eGRID Subregion	CO ₂ Factor	CH₄ Factor	N ₂ O Factor	
•	(Ib / MWh)	(Ib / MWh)	(lb / MWh)	
AKGD (ASCC Alaska Grid)	1,097.6	0.100	0.014	
AKMS (ASCC Miscellaneous)	534.1	0.027	0.005	
AZNM (WECC Southwest)	846.6	0.054	0.007	
CAMX (WECC California)	513.5	0.032	0.004	
ERCT (ERCOT AII)	818.6	0.052	0.007	
FRCC (FRCC All)	835.1	0.049	0.006	
HIMS (HICC Miscellaneous)	1,143.2	0.110	0.017	
HIOA (HICC Oahu)	1,653.0	0.178	0.027	
MROE (MRO East)	1,526.4	0.139	0.020	
MROW (MRO West)	979.5	0.104	0.015	
NEWE (NPCC New England)	528.2	0.074	0.010	
NWPP (WECC Northwest)	600.0	0.056	0.008	
NYCW (NPCC NYC/Westchester)	634.6	0.022	0.003	
NYLI (NPCC Long Island)	1,203.9	0.138	0.018	
NYUP (NPCC Upstate NY)	233.5	0.016	0.002	
PRMS (Puerto Rico Miscellaneous)	1,602.2	0.085	0.014	
RFCE (RFC East)	652.5	0.045	0.006	
RFCM (RFC Michigan)	1,153.1	0.101	0.014	
RFCW (RFC West)	985.0	0.086	0.012	
RMPA (WECC Rockies)	1,144.8	0.101	0.014	
SPNO (SPP North)	954.0	0.100	0.014	
SPSO (SPP South)	931.8	0.060	0.009	
SRMV (SERC Mississippi Valley)	740.4	0.032	0.004	
SRMW (SERC Midwest)	1,480.7	0.156	0.023	
SRSO (SERC South)	860.2	0.060	0.009	
SRTV (SERC Tennessee Valley)	834.2	0.075	0.011	
SRVC (SERC Virginia/Carolina)	623.1	0.050	0.007	
US Average	818.3	0.065	0.009	

Kgs of CO₂ per MegaWatt Hour of electricity generated

	U.S. Average	370	
	Orlando	379	
	Atlanta	392	
	Portland	274	
(Chicago	449	
	Minneapolis	448	
	Upstate NY	233	"Lowest"
	Oahu	750	"Highest"

Source: EPA eGRID2020, February 2022

https://www.epa.gov/system/files/documents/2022-04/ghg_emission_factors_hub.pdf

<u>Fuel source x energy source emissions</u> Natural Gas = 53.06 kg CO₂ per mmBtu Electricity (Chicago) = 449 kg CO₂ / MW

> Gas: 81.7 MMBTU/yr Electric: 26.4 MMBTU/yr Total: 108.1 MMBTU/yr

Operational Carbon for EEBA House - Chicago

7.82 Tonnes CO₂e / yr

30yr equivalent : 234 tCO2e

<u>Fuel source x energy source emissions</u> Natural Gas = 53.06 kg CO₂ per mmBtu Electricity (Orlando) = 380 kg CO₂ / MW

> Gas: 23.4 MMBTU/yr Electric: 36.4 MMBTU/yr Total: 59.8 MMBTU/yr

Operational Carbon for EEBA House - Orlando

5.31 Tonnes CO₂e / yr

30yr equivalent : 159 tCO2e

<u>Fuel source x energy source emissions</u> Natural Gas = 53.06 kg CO_2 per mmBtu Electricity (Portland) = 274 kg CO_2 / MW

> Gas: 84.3 MMBTU/yr Electric: 24.9 MMBTU/yr Total: 109.2 MMBTU/yr

Operational Carbon for EEBA House - Portland

6.48 Tonnes CO₂e / yr

30yr equivalent : 194 tCO2e

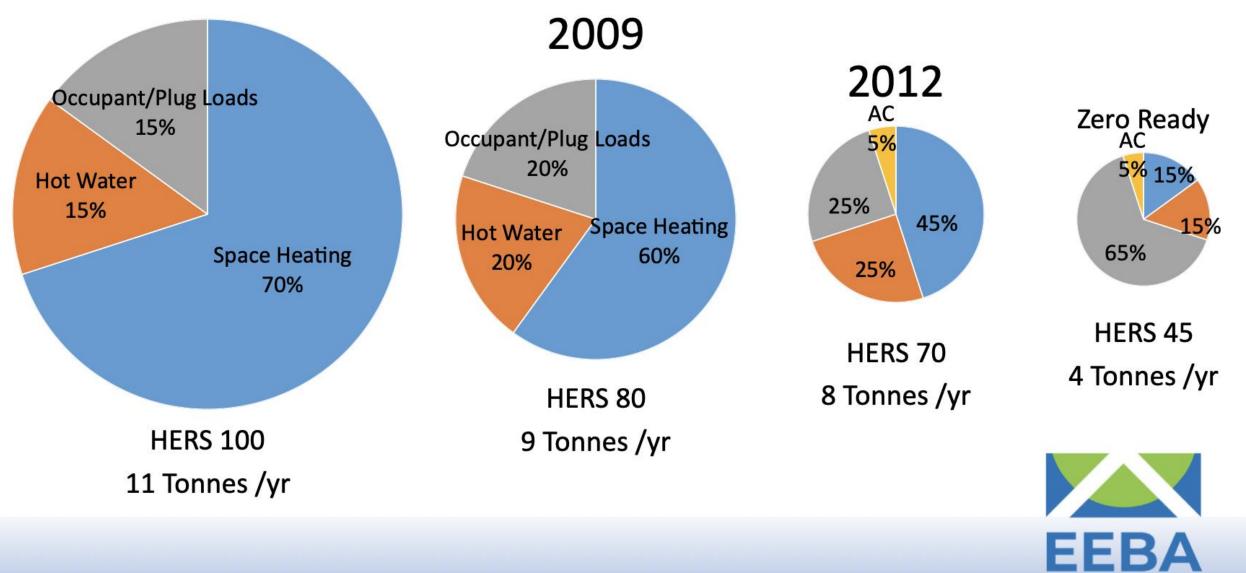
<u>Fuel source x energy source emissions</u> Natural Gas = 53.06 kg CO₂ per mmBtu Electricity (Minneapolis) = 448 kg CO₂ / MW

> Gas: 108.5 MMBTU/yr Electric: 25.6 MMBTU/yr Total: 134.1 MMBTU/yr

Operational Carbon for EEBA House - Minneapolis

9.12 Tonnes CO₂e / yr

30yr equivalent : 273 tCO2e


Common energy modelling tools will be adding GHG reports

- Some regional, annual fine tuning will be worked on to ensure consistency

Codes Have Changed... Operational Carbon has improved

Operational Carbon Improvement - Cold Climate 2006

The news on electrification is

complex and grid-dependent

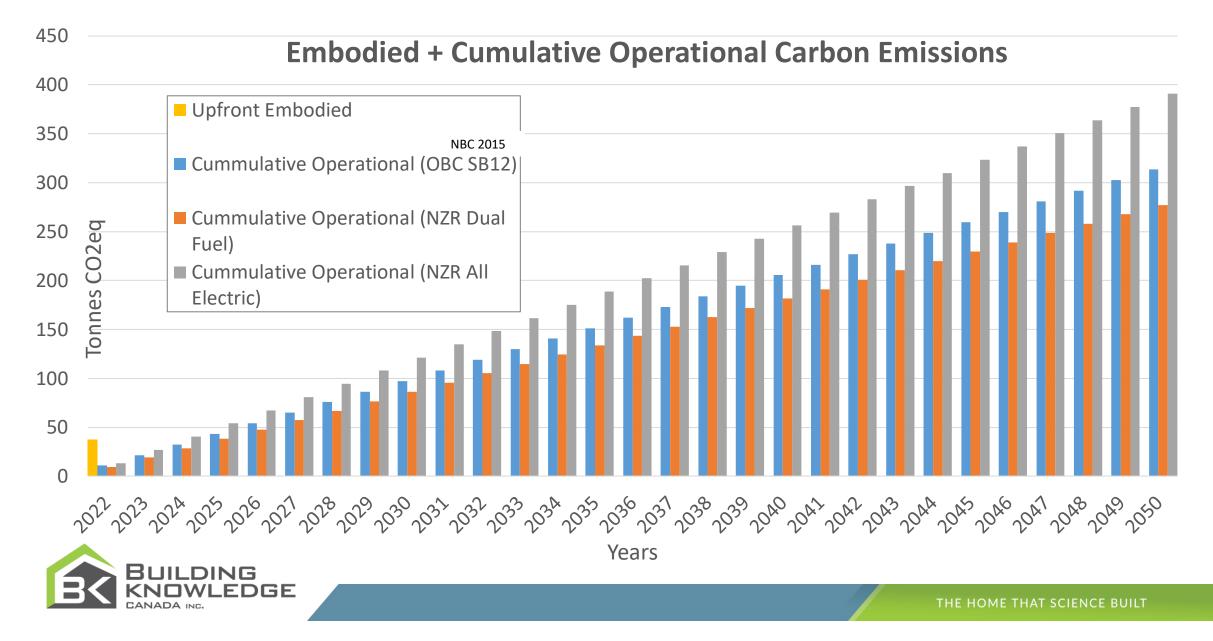
- IMPACT on operating cost significant-Elec vs Gas
- Enclosure and passive enhancements(with electrification) increase in ROI
- Results will change overtime e.g.
 Grid changes and Energy production costs

Which homes would benefit from heat pumps?

Four distinct scenarios for electric heat pumps in Canadian housing:

The low-hanging fruit Switching oil furnaces to heat pumps Saves energy, \$ and GHGs across Canada 5-15 year payback (Cost of GHG saved: < \$0 / tonne) 	 The toughest nut to crack Switching gas furnaces to heat pumps Saves GHGs, but increases \$ in ON, MB and BC. Homeowners are worse off No Payback (Cost of GHG saved: \$70-300 / tonne)
The cost-effective alternative Switching electric baseboards to heat pumps Saves energy and \$ across Canada Saves GHGs in AB, SK, ON and Atlantic Canada 5-15 year payback (Cost of GHG saved: < \$0 / tonne)	 Unintended consequences Switching gas furnaces to heat pumps Increases GHGs and \$ in AB, SK and NS, due to extensive coal and oil based electricity generation in those provinces No Payback, no GHGs saved

ural Resources Ressources naturelles nada Canada


A Tale of 2 Grids –Ontario vs Alberta 30 Year Impact, 2300 sqft SD Home. **Ottawa, ON cz6**

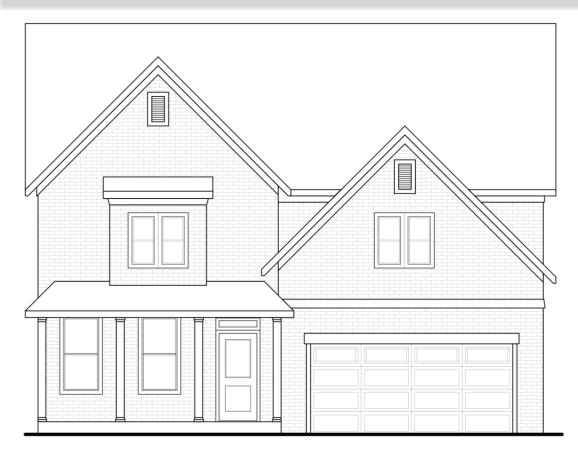
120


Embodied + Cumulative Operational Carbon Emissions

A Tale of 2 Grids –Ontario vs Alberta 30 Year Impact, 2300 sqft SD Home. Calgary AB, ON cz7

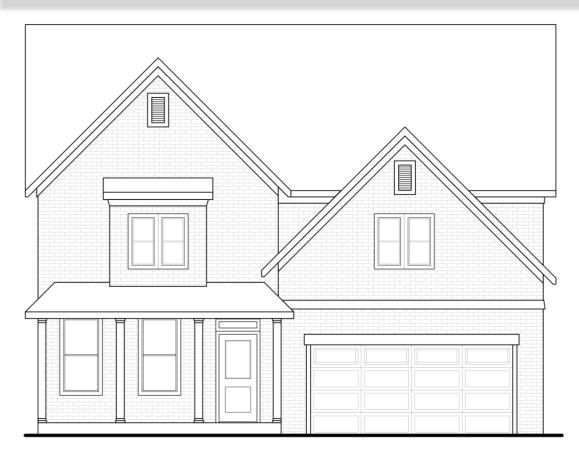
Common Energy Efficiency Improvements

What improvements have you made in your homes?


- Better air tightness
- More attic insulation
- Better windows
- Improved HVAC efficiency
- Improved water heater efficiency
- Add a heat recovery ventilator
- Thicker walls
- Advanced framing
- More insulation on foundation walls
- Under-slab insulation
- Better lights and appliances
- Addition of renewable energy generation solar

Which of these might significantly impact embodied energy?

Choices, Alternatives & Options


The Base EEBA Carbon House – Chicago cz 5

- 2 Story, All brick
- Full basement
- R49 Attic insulation
- 2x6 Above grade walls R21 Batts
- R11 Basement walls, no slab insulation
- Double-glazed, Low E, argon windows
- 3.0 ACH@50Pa Air tightness
- 95% Gas furnace, 13 SEER AC
- Power vented gas water heater 0.56 EF

What improvements have you made already?

The Base EEBA Carbon House – Minneapolis cz 6

- 2 Storey, All brick
- Full basement
- R49 Attic insulation
- 2x6 Above grade walls R21 Batts
- R11 Basement walls, no slab insulation
- Double-glazed, Low E, argon windows
- 3.0 ACH@50Pa Air tightness
- 95% Gas furnace, 13 SEER AC
- Power vented gas water heater 0.56 EF

What improvements have you made already?

Cold Climate Upgrade Examples

Three Examples of Enclosure Energy Improvements(Passive) on **Operational Carbon**

- 1. Improved air tightness
- 2. Addition of continuous insulation
- 3. Upgrade to triple-glazed windows

Warm / Mild Climate Upgrade Examples

Three Examples of Enclosure Energy Improvements (Passive) on **Operational Carbon**

- 1. Improved air tightness
- 2. Addition of continuous insulation
- 3. Getting ducts in conditioned space

Chicago Base House cz5

ACH50	MMBTUs/yr	CO2e Tonnes/yr
3.0	108.1	7.82
2.0	103.2	7.56
1.5	100.9	7.44
0.60	96.6	7.21

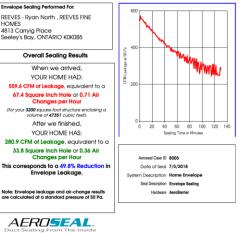
A 5% reduction in Tonnes CO₂e/yr

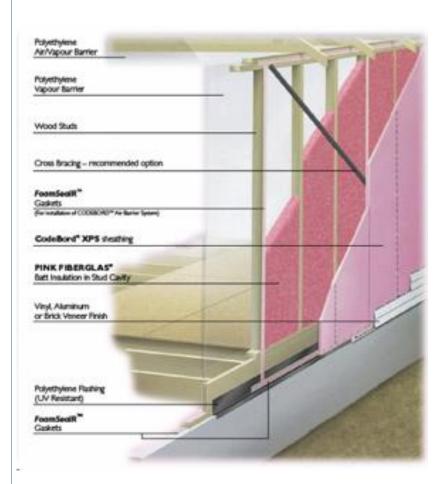
What changes will be required?

Improved air tightness requires:

- Tapes,
- Caulks
- Sprays
- Committed, trained labor

There are helpful new technologies


Under 1.5 ACH50 is now achievable by all builders



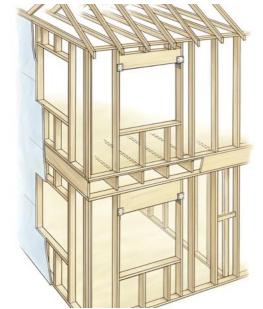
Breakthrough Envelope Sealing Technology By Aeroseal

Certificate of Completion

Chicago Base House cz5

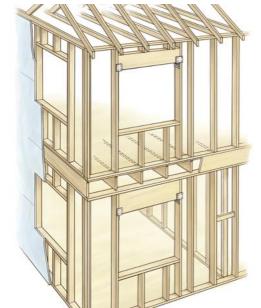
Exterior R-Value	MMBTUs/yr	CO₂e Tonnes/yr
0	108.1	7.82
5	103.5	7.57
10	100.5	7.41

A 5% reduction in Tonnes CO₂e/yr


What changes will be required?

3 Ways to improve Effective R-values

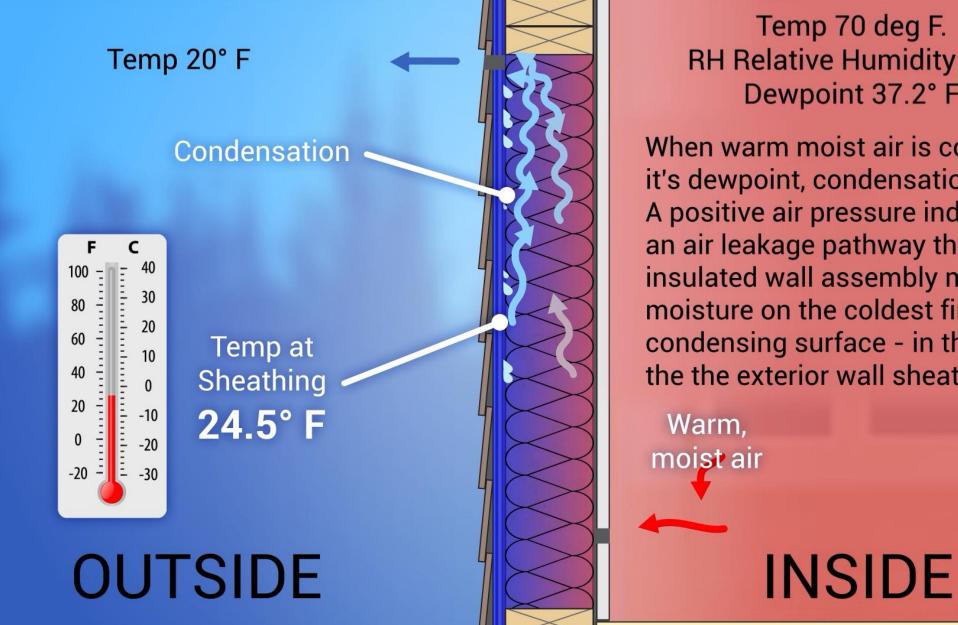
- More cavity insulation
- Advanced / Optimized framing
- Continuous insulation



3 Ways to improve Effective R-values

- More cavity insulation
- Advanced / Optimized framing
- Continuous insulation

2 x 6 Wall Total Effective R-Value


Framing Percentage	R-V	alue
19%	Cavity	Studs
Outside air film	0.17	0.17
Exterior insulation	0	0
7/16" OSB	0.62	0.62
Cladding/Siding	0.62	0.62
Framing - 2 x 6	n/a	5.83
cavity insulation	22	n/a
½" gypsum	0.45	0.45
Interior air film	0.68	0.68
Sub-Totals	24.54	8.37
Total Wall R- Value	16	.95

2 x 6 Wall Total Effective R-Value

Framing Percentage	R-Va	alue
19%	Cavity	Studs
Outside air film	0.17	0.17
Exterior insulation	5	5
7/16" OSB	0.62	0.62
Cladding/Siding	0.62	0.62
Framing - 2 x 6	n/a	5.83
cavity insulation	22	n/a
½" gypsum	0.45	0.45
Interior air film	0.68	0.68
Sub-Totals	29.54	13.37
Total Wall R- Value	21.	

2 x 4 Wall + R5 Total Effective R-Value

Framing Percentage	R-Va	lue
25%	Cavity	Studs
Outside air film	0.17	0.17
Exterior insulation	5	5
7/16" OSB	0.62	0.62
Cladding/Siding	0.62	0.62
Framing - 2 x 4	n/a	3.71
cavity insulation	13	n/a
½" gypsum	0.45	0.45
Interior air film	0.68	0.68
Sub-Totals	20.54	11.25
Total Wall R- Value	15.	

Exterior Continuous Insulation Lowers Risks of Condensation

Temp 70 deg F. **RH Relative Humidity 30%** Dewpoint 37.2° F

When warm moist air is cooled to it's dewpoint, condensation occurs. A positive air pressure indoors with an air leakage pathway through a insulated wall assembly may leave moisture on the coldest first condensing surface - in this case the the exterior wall sheathing.

2 x 4 Wall + R12 Total Effective R-Value

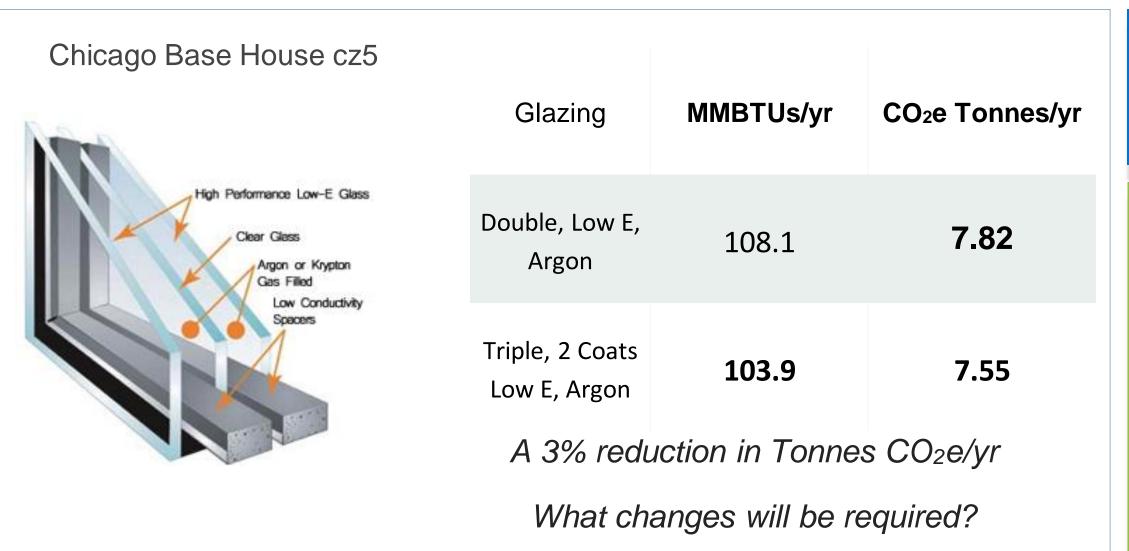
Framing Percentage	R-Va	alue
25%	Cavity	Studs
Outside air film	0.17	0.17
Exterior insulation	12	12
7/16" OSB	0.62	0.62
Cladding/Siding	0.62	0.62
Framing - 2 x 4	n/a	3.71
cavity insulation	13	n/a
½" gypsum	0.45	0.45
Interior air film	0.68	0.68
Sub-Totals	27.54	18.25
Total Wall R- Value	22.	

Various Options

How would these impact your build process?

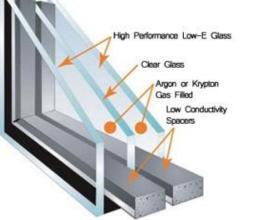
How might these choices impact the the overall greenhouse gas emissions of the homes you build?

Continuous Insulation:


- Design changes
- Process changes
- Material selection
- Cladding implications

There are many options *It may even allow a return to a 2x4 wall*

Select the right Low E coatings to optimize winter and summer loads



The Synergies of Enclosure Improvements

- Lowers Heating & Cooling Loads: Winter design Summer design
- Operative Temp improvement (Comfort –ASHRAE 55)
- Enclosure Durability: Dew point and condensation control
- Thermal "storage" –peak load off-set

This Make Heat Pumps More Viable

Impact of Enclosure Improvements on Design HVAC Loads

Chicago Base House cz5

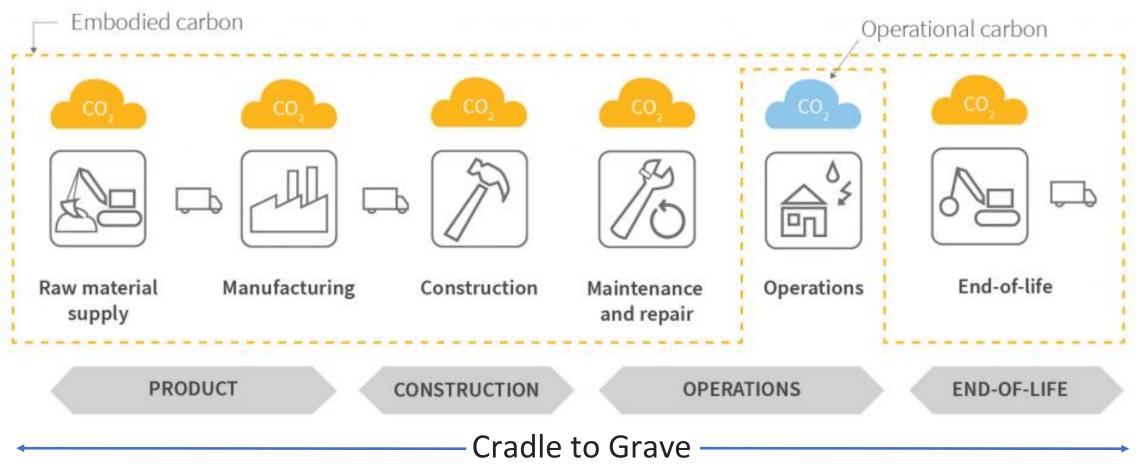
	Base House	Upgraded House
Heating Load	44,000 BTU/hr	31,000
Cooling Load	22,200 BTU/hr	15,500
CO2e Tonnes/yr	7.82	6.8 with Nat. gas 5.9 with Dual Fuel HP
Heat Pump Size	3.5 Ton	2.5 Ton

Upgrades: 3 ACH to 1.5 ACH R10 Exterior Insulation Triple- Glazed Windows Then add a Heat Pump for heating

A 25% reduction in Operational Carbon

Operational Carbon Summary

- It's based on energy modelling, hence it will **vary**:
 - Size of home
 - Energy efficiency features
 - Climate
- It will **vary** depending on how "clean" the fuel sources are:
 - Space Heating and Hot Water
 - Natural gas, propane, electricity, fuel oil
 - Electricity for cooling, lights, appliances
 - Hydro, nuclear, natural gas, solar, wind
- Current common energy models do **not** account for regional electric grid differences
- Hand calculations are needed for best accuracy in any market


Exercise

- Review the 4 energy efficiency upgrades (including the addition of a heat pump) and discuss the changes required to your processes and any barriers you envision.
- Rank the 4 energy upgrade options as to when you would implement them

Embodied Carbon

Building Lifecycle

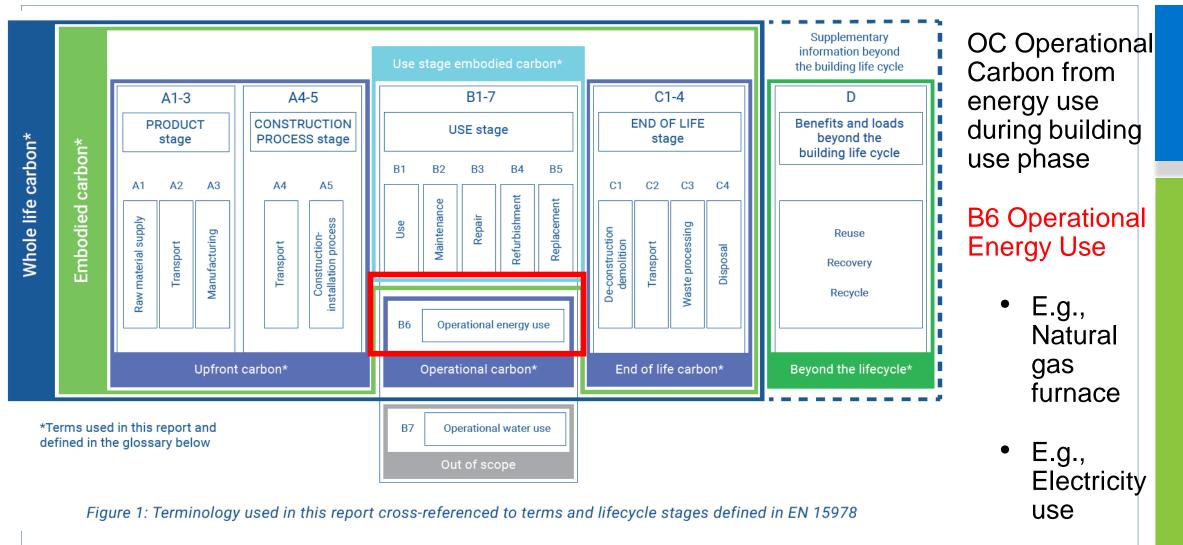
Consider the total life cycle of the homes you create when making design, material and building technique decisions:

- How long do you expect your homes to last?
- Consider examples of decisions you could make to increase the service life of the homes you build?

Currently assessed as a function of the making of each building material:

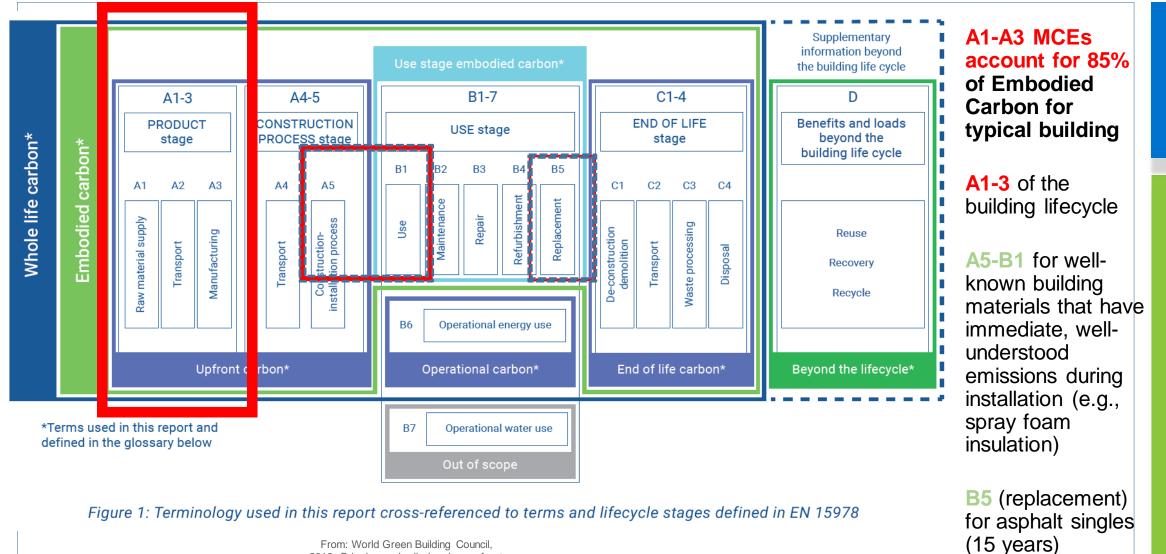
- Extraction
- Transportation to the factory
- Production

Cradle to Gate - the gate of the manufacturing

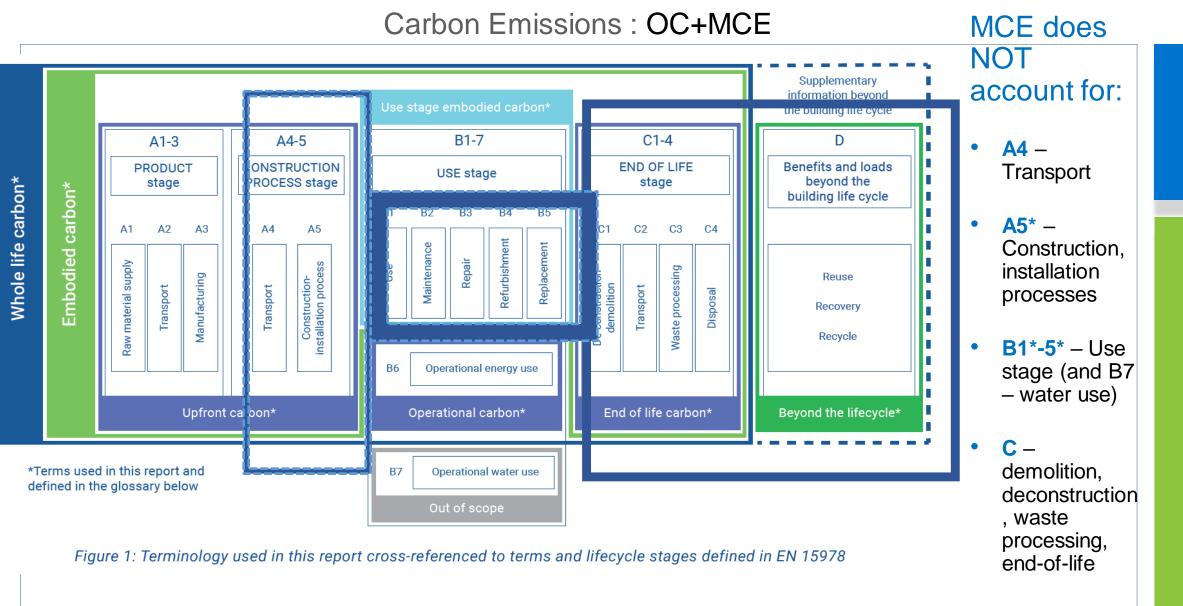

Carbon Emissions : OC+MCE What can we easily account for today?

Operational Carbon Emissions (OC)

Material Carbon Emissions (MCE)

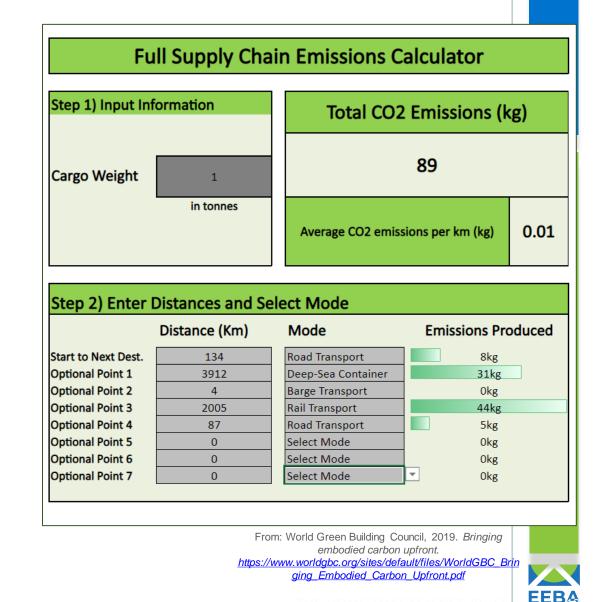

Carbon Emissions : OC+MCE

From: World Green Building Council, 2019. Bringing embodied carbon upfront. https://www.worldgbc.org/sites/default/files/WorldGBC_Bringing_Embodied_Carbon_Upfront.pdf



Carbon Emissions : OC+MCE

From: World Green Building Council, 2019. Bringing embodied carbon upfront. https://www.worldgbc.org/sites/default/fil es/WorldGBC Bringing Embodied Carb on_Upfront.pdf


From: World Green Building Council, 2019. Bringing embodied carbon upfront. https://www.worldgbc.org/sites/default/files/WorldGBC_Bringing_Embodied_Carbon_Upfront.pdf D – Reuse, recovery, recycling

Not Included in MCE

A4 – Transport

- Transport of materials to construction site typically adds about 5-10% to the embodied carbon emissions
- Can be calculated, if you know the shipping information for every material (mass of material, distance and transport type)
- Example online calculator <u>website</u>

Not Included A5 Construction, Installation

- A5 included for some products those with necessary, sizable, predictable GHG emissions, such as spray foam insulations
- Not included for most materials; e.g., emissions from equipment, machinery used on site during construction
- Typically, A5 would add another 5-10% to embodied carbon emissions
- Can reduce construction site emissions by using cleaner energy on site (e.g., grid electricity vs. diesel generator)

Not Included B Use Stage

- B1 Use B2 – Maintenance
- B3 Repair
- B4 Refurbishment
- B5 Replacement

Carbon Emissions : OC+MCE

- Most building materials have no or few emissions during the use stage
- B1 included for some products those that have well-understood off-gassing during use stage, such as certain rigid-foam insulations
- B5 is included for asphalt shingles (assumed need replacing once over 30 years)

Carbon Emissions : OC+MCE

Not Included C End-of-Life

and

D

Beyond the Building Lifecycle

- Most Tools , including MCE^{2,} use a timeframe of 30 years
- Residential buildings assumed to last longer than 30 years
 - End-of-life processes (especially decades into the future) are largely variable and unknown

Embodied Carbon Where do we get the info?

Environmental Product Declaration (EPD)

- Third party-verified
- Registered (e.g., with CSA)

Created according to product category rules (PCRs)

- **PCRs** ensure comparability between different products with the same function
- **PCRs** ensure that manufacturers are following the same rules for accounting for the emissions from their products

PRODUCT STAGE	CONSTRUCTION PROCESS STAGE	USE STAGE END OF LIFE STAGE						iΕ				
A1 A2 A3	A4 A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4
Raw material supply Transport Manufacturing	Transport from gate to site Assembly/Install	Use	Maintenance	Repair	Replacement	Refurbishment	Building Operational Energy Use During Product Use	Building Operational Water Use During Product Use	Deconstruction	Transport	Waste processing	Disposal

FOAMULAR® NGX™ XPS Insulation

According to ISO 14025, EN 15804 and ISO 21930:2017

4.1. Life Cycle Impact Assessment Results

Results by functional unit are available in this section. To convert to results for a particular product, please see section 4.3.

Table 9. LCIA Results for North America (TRACI) for FOAMULAR® NGX™ XPS Insulation (1 m², R_{SI}-1)

TRACI v2.1	A1 - A3	A4	A5	B1	B2 - B7	C1	C2	C3	C4
GWP 100 [kg CO2 eq]	6.92E+00	1.44E-01	2.24E-03	2.67E+00	MND	MND	2.10E-02	MND	1.40E-02
ODP [kg CFC-11 eq]	2.08E-05	3.56E-08	1.21E-10	0.00E+00	MND	MND	5.19E-09	MND	2.02E-09
AP [kg SO2 eq]	575 P	8.97E-04	3.19E-06	0.00E+00	MND	MND	1.31E-04	MND	3.66E-05
EP [kg N eq]	7.79E-03	1.79E-04	1.06E-06	0.00E+00	MND	MND	2.61E-05	MND	7.80E-06
POCP [kg O3 eq]	1.88E-01	2.43E-02	8.67E-05	3.72E-04	MND	MND	3.55E-03	MND	8.69E-04
ADP _{fossil} [MJ, LHV]	9.56E+00	3.20E-01	1.10E-03	0.00E+00	MND	MND	4.66E-02	MND	1.87E-02

[GWP 100 - Global Warming Potential]; [ODP - Ozone Depletion Potential]; [AP - Acidification Potential]; [EP - Eutrophication Potential]; [POCP - Smog Formation Potential]: [ADP_{fensi} - Abiotic Resource Depletion Potential of Non-renewable (fossil) energy resources]

Table 10. LCIA Results for North America (TRACI) for Laminate Addon for FOAMULAR® NGX™ Insulating Sheathing (1 m²)

TRACI v2.1	A1 - A3	A4	A5	B1	B2 - B7	C1	C2	C3	C4
GWP 100 [kg CO2 eq]	1.02E-01	6.23E-03	MND	MND	MND	MND	9.24E-04	MND	1.84E-04
ODP [kg CFC-11 eq]	3.51E-09	1.54E-09	MND	MND	MND	MND	2.28E-10	MND	8.89E-11
AP [kg SO2 eq]	4.21E-04	3.88E-05	MND	MND	MND	MND	5.75E-06	MND	1.61E-06
EP [kg N eq]	1.41E-04	7.75E-06	MND	MND	MND	MND	1.15E-06	MND	3.43E-07
POCP [kg O3 eq]	5.64E-03	1.05E-03	MND	MND	MND	MND	1.56E-04	MND	3.83E-05
ADP _{fessil} [MJ, LHV]	3.93E-01	1.38E-02	MND	MND	MND	MND	2.05E-03	MND	8.25E-04
[CWP 100 - Clobal Warming	Detentially (OD)	Orene Deele	tion Determine	LIAD Antidition	tion Detentiol	I ICD Cutroni	Insting Determine	iell.	

[GWP 100 - Global Warming Potential]; [ODP - Ozone Depletion Potential]; [AP - Acidification Potential]; [EP - Eutrophication Potential]; [POCP - Smog Formation Potential]; [ADP_{fosial} - Abiotic Resource Depletion Potential of Non-renewable (fossil) energy resources]

Table 11. LCIA Results for North America (TRACI) for Laminate Addon for FOAMULAR® NGX[™] PROPINK® (1 m²)

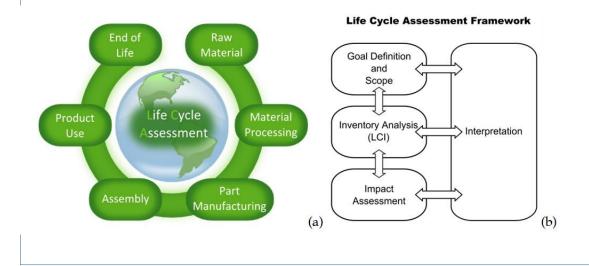
TRACI v2.1	A1 - A3	A4	A5	B1	B2 - B7	C1	C2	C3	C4
GWP 100 [kg CO2 eq]	2.83E-01	1.63E-02	MND	MND	MND	MND	2.30E-03	MND	4.57E-04
ODP [kg CFC-11 eq]	1.58E-08	4.02E-09	MND	MND	MND	MND	5.68E-10	MND	2.21E-10
AP [kg SO2 eq]	1.19E-03	1.01E-04	MND	MND	MND	MND	1.43E-05	MND	4.00E-06
EP [kg N eq]	5.44E-04	2.02E-05	MND	MND	MND	MND	2.86E-06	MND	8.54E-07
POCP [kg O3 eq]	1.69E-02	2.75E-03	MND	MND	MND	MND	3.88E-04	MND	9.51E-05
ADProssil [MJ, LHV]	9.81E-01	3.61E-02	MND	MND	MND	MND	5.11E-03	MND	2.05E-03

[GWP 100 - Global Warming Potential]; [ODP - Ozone Depletion Potential]; [AP - Acidification Potential]; [EP - Eutrophication Potential]; [POCP - Smog Formation Potential]; [ADP_{foult} - Abiotic Resource Depletion Potential of Non-renewable (fossil) energy resources]

MATERIAL CARBON EMISSIONS : SOURCES & REFERENCES

1.Life cycle assessments (LCAs)

2. Environmental Product Declarations (EPDs)


3.Materials Emissions Databases

Reports the lifecycle environmental impacts of products or services

 Includes GWP, but also other impacts...

Done according to standards:

(a) Cradle-to-<u>grave</u> Life Cycle Assessment and

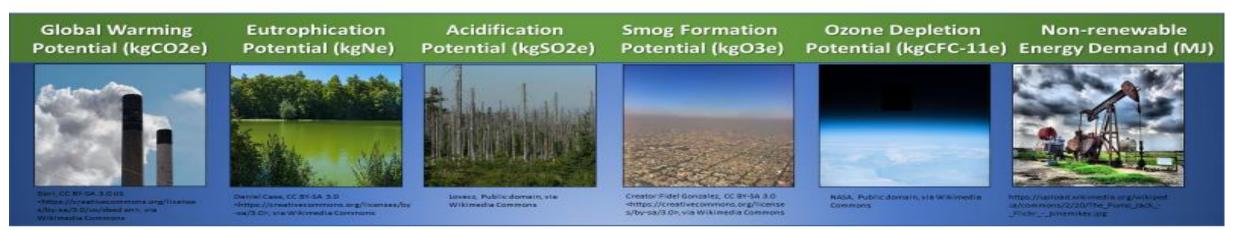
(b) LCA Framework according to ISO standards 14040 and 14044

(International Organization for Standardization 2006).

From: intechopen.com

From:

http://www.intechopen.com/books/thirdgeneration-photovoltaics/life-cycleassessment-of-organic-photovoltaics



Life-Cycle Assessment

US EPA

TRACI Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts

LCA Impact Categories (TRACI v2.1)

These are the impact categories that are considered in LEED. TRACI has other categories as well, such as Ecotoxicity Potential and particulate emissions (kgPM2.5e).

LCA Life Cycle Assessment Beyond just carbon

Athena

Institute

Sustainable Materials

- **Primary energy (PE)** measures the total amount of primary energy directly withdrawn from the hydrosphere, atmosphere, geosphere or energy source without any anthropogenic change, including both non-renewable and renewable resources.
- **Global warming potential (GWP)** measures the amount of CO2 released over the life of the building.
- **Ozone depletion potential (ODP)** measures the amount of ozone depleting gases (R11) created by human emissions.
- Photochemical ozone creation potential (POCP) measures the amount of ethylene (C2H4) created by partial combustion.
- Acidification potential (AP) measures the amount of sulphur dioxide (SO2) from combustion processes in power stations and industrial buildings, in homes, by cars and small consumers.
- Eutrophication potential (EP) measures the amount of phosphate (PO4) from fertilisers, combustion engines, domestic wastewater, industrial waste and wastewa

Tools: True LCA Analysis B C D E F H J G A Weighted Primary GWP Resource Use Air Pollution H2O Pollution TOTAL IMPACTS BY Energy (MJ) (tonnes) (tonnes) Index Index **ATHENA®** TOTAL TOTAL TOTAL TOTAL TOTAL BUILDING COMPONENT 23 COLUMNS & BEAMS 0.00 0 01 0 01 EcoCalculator INTERMEDIATE FLOORS 0 0 0 0 0.00 4 EXTERIOR WALLS 0.00 0 0 0 01 5 0 0 0 0.00 WINDOWS 0 for assemblies Athena INTERIOR WALLS nl nl 0 0 0.00 0 0.00 ROOF 0 0 0 Sustainable Materials 8 WHOLE BUILDING O 0 0 0 0.00 C. EXTERIOR WALLS Institute 10 ATHENA ASSEMBLY EVALUATION TOOL v2.3—Toronto Low-Rise Building 11 IN THE YELLOW CELLS BELOW, ENTER THE AREA (in m²) THAT EACH ASSEMBLY IS USED IN YOUR BUILDING Air Pollution Primary Weighted H2O Pollution GWP Index Assembly R-Percentage of Energy Resource Use Index 12 per m' (kg) per m² (kg) value m total per m² (MJ) per m² per m² 1421.11 88.76 319.71 18.36 7.43 13 Average: 14 8" CONCRETE BLOCK Athena Sustainable Materials Institute Concrete block, brick cladding 15 rigid insulation, vapor barrier 21.80 2254.83 113.76 256.98 27.99 0.0198 Concrete block, steel cladding, 2 21.61 16 rigid insulation, vapor barrier 47.3227 2519.28 208.41 190.63 37.45 Concrete block, stucco cladding Carbon is just part of the picture 3 17 rigid insulation, vapor barrier 21.11 1530.64 88.82 213.63 16.79 0.0310 Concrete Block, EIFS, vapor barrier 18 4 16.51 1227.71 72.38 136.73 14.51 0.0131 Concrete Block, precast cladding, rigid 5 19 301.72 insulation, vapor barrier 21.00 1464.18 93.18 16.58 0.0557 Concrete block, brick cladding rigid insulation, vapor barrier 6 20 gypsum board, latex paint 22.36 2394.08 118.17 275.66 29.89 0.0198 Concrete block, steel cladding 7 rigid insulation, vapor barrier

22.17

21.67

17.07

H + + H\ WELCOME & HOW-TO / COLUMNS AND BEAMS / INTERMEDIATE FLOORS) EXTERIOR WALLS / WINDOWS / INTERIOR WALLS / ROOFS /

2658.52

1669.89

1366.95

212.82

93.23

76.79

209.30

232.30

155.41

39.35

18.69

16.41

47.3227

0.0310

0.0131

EEBA

21

22

23

8

9

gypsum board, latex paint

gypsum board, latex paint

board, latex paint

Concrete block, stucco cladding rigid insulation, vapor barrier

Concrete block, EIFS, vapor barrier, gypsum

Concrete block, precast cladding, rigid

Environmental Product Declaration (EPD)

- Third party-verified
- Registered (e.g., with CSA)

Created according to product category rules (PCRs)

- **PCRs** ensure comparability between different products with the same function
- **PCRs** ensure that manufacturers are following the same rules for accounting for the emissions from their products

PRODUCT STAGE	CONSTRUCTION PROCESS STAGE	USE STAGE END OF LIFE STAGE						iΕ				
A1 A2 A3	A4 A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4
Raw material supply Transport Manufacturing	Transport from gate to site Assembly/Install	Use	Maintenance	Repair	Replacement	Refurbishment	Building Operational Energy Use During Product Use	Building Operational Water Use During Product Use	Deconstruction	Transport	Waste processing	Disposal

FOAMULAR® NGX™ XPS Insulation

According to ISO 14025, EN 15804 and ISO 21930:2017

4.1. Life Cycle Impact Assessment Results

Results by functional unit are available in this section. To convert to results for a particular product, please see section 4.3.

Table 9. LCIA Results for North America (TRACI) for FOAMULAR® NGX™ XPS Insulation (1 m², R_{SI}-1)

TRACI v2.1	A1 - A3	A4	A5	B1	B2 - B7	C1	C2	C3	C4
GWP 100 [kg CO2 eq]	6.92E+00	1.44E-01	2.24E-03	2.67E+00	MND	MND	2.10E-02	MND	1.40E-02
ODP [kg CFC-11 eq]	2.08E-05	3.56E-08	1.21E-10	0.00E+00	MND	MND	5.19E-09	MND	2.02E-09
AP [kg SO2 eq]	575 P	8.97E-04	3.19E-06	0.00E+00	MND	MND	1.31E-04	MND	3.66E-05
EP [kg N eq]	7.79E-03	1.79E-04	1.06E-06	0.00E+00	MND	MND	2.61E-05	MND	7.80E-06
POCP [kg O3 eq]	1.88E-01	2.43E-02	8.67E-05	3.72E-04	MND	MND	3.55E-03	MND	8.69E-04
ADP _{fossil} [MJ, LHV]	9.56E+00	3.20E-01	1.10E-03	0.00E+00	MND	MND	4.66E-02	MND	1.87E-02

[GWP 100 - Global Warming Potential]; [ODP - Ozone Depletion Potential]; [AP - Acidification Potential]; [EP - Eutrophication Potential]; [POCP - Smog Formation Potential]: [ADP_{fend} - Abiotic Resource Depletion Potential of Non-renewable (fossil) energy resources]

Table 10. LCIA Results for North America (TRACI) for Laminate Addon for FOAMULAR® NGX™ Insulating Sheathing (1 m²)

TRACI v2.1	A1 - A3	A4	A5	B1	B2 - B7	C1	C2	C3	C4		
GWP 100 [kg CO2 eq]	1.02E-01	6.23E-03	MND	MND	MND	MND	9.24E-04	MND	1.84E-04		
ODP [kg CFC-11 eq]	3.51E-09	1.54E-09	MND	MND	MND	MND	2.28E-10	MND	8.89E-11		
AP [kg SO2 eq]	4.21E-04	3.88E-05	MND	MND	MND	MND	5.75E-06	MND	1.61E-06		
EP [kg N eq]	1.41E-04	7.75E-06	MND	MND	MND	MND	1.15E-06	MND	3.43E-07		
POCP [kg O3 eq]	5.64E-03	1.05E-03	MND	MND	MND	MND	1.56E-04	MND	3.83E-05		
ADP _{fessil} [MJ, LHV]	3.93E-01	1.38E-02	MND	MND	MND	MND	2.05E-03	MND	8.25E-04		
[GWP 100_Glabal Warming Potential]: [ODB_Ozono Doplation Potential]: [AB_Acidification Potential]: [EB_Eutrophication Potential]:											

[GWP 100 - Global Warming Potential]; [ODP - Ozone Depletion Potential]; [AP - Acidification Potential]; [EP - Eutrophication Potential [POCP - Smog Formation Potential]; [ADP_{foss1} - Abiotic Resource Depletion Potential of Non-renewable (fossil) energy resources]

Table 11. LCIA Results for North America (TRACI) for Laminate Addon for FOAMULAR® NGX[™] PROPINK® (1 m²)

TRACI v2.1	A1 - A3	A4	A5	B1	B2 - B7	C1	C2	C3	C4
GWP 100 [kg CO2 eq]	2.83E-01	1.63E-02	MND	MND	MND	MND	2.30E-03	MND	4.57E-04
ODP [kg CFC-11 eq]	1.58E-08	4.02E-09	MND	MND	MND	MND	5.68E-10	MND	2.21E-10
AP [kg SO2 eq]	1.19E-03	1.01E-04	MND	MND	MND	MND	1.43E-05	MND	4.00E-06
EP [kg N eq]	5.44E-04	2.02E-05	MND	MND	MND	MND	2.86E-06	MND	8.54E-07
POCP [kg O3 eq]	1.69E-02	2.75E-03	MND	MND	MND	MND	3.88E-04	MND	9.51E-05
ADPfossil [MJ, LHV]	9.81E-01	3.61E-02	MND	MND	MND	MND	5.11E-03	MND	2.05E-03

[GWP 100 - Global Warming Potential]; [ODP - Ozone Depletion Potential]; [AP - Acidification Potential]; [EP - Eutrophication Potential]; [POCP - Smog Formation Potential]; [ADP_{foult} - Abiotic Resource Depletion Potential of Non-renewable (fossil) energy resources]

Environmental Product Declaration (EPD)

Example Product Category Rules

Product Category Rule (PCR) Guidance for Building-Related Products and Services

Part B: Building Envelope Thermal Insulation EPD Requirements UL 10010-1

www.ul.com/businesses/environment

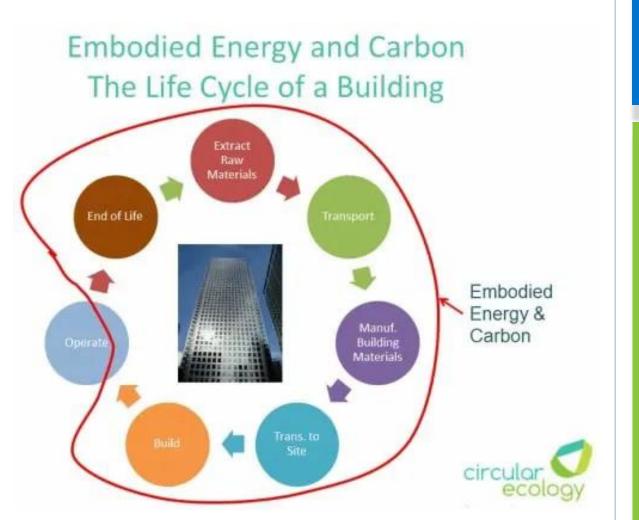
From: https://www.shopulstandards.com/

Product Category Rule for Environmental Product Declarations

PCR for Portland, Blended, Masonry, Mortar, and Plastic (Stucco) Cements

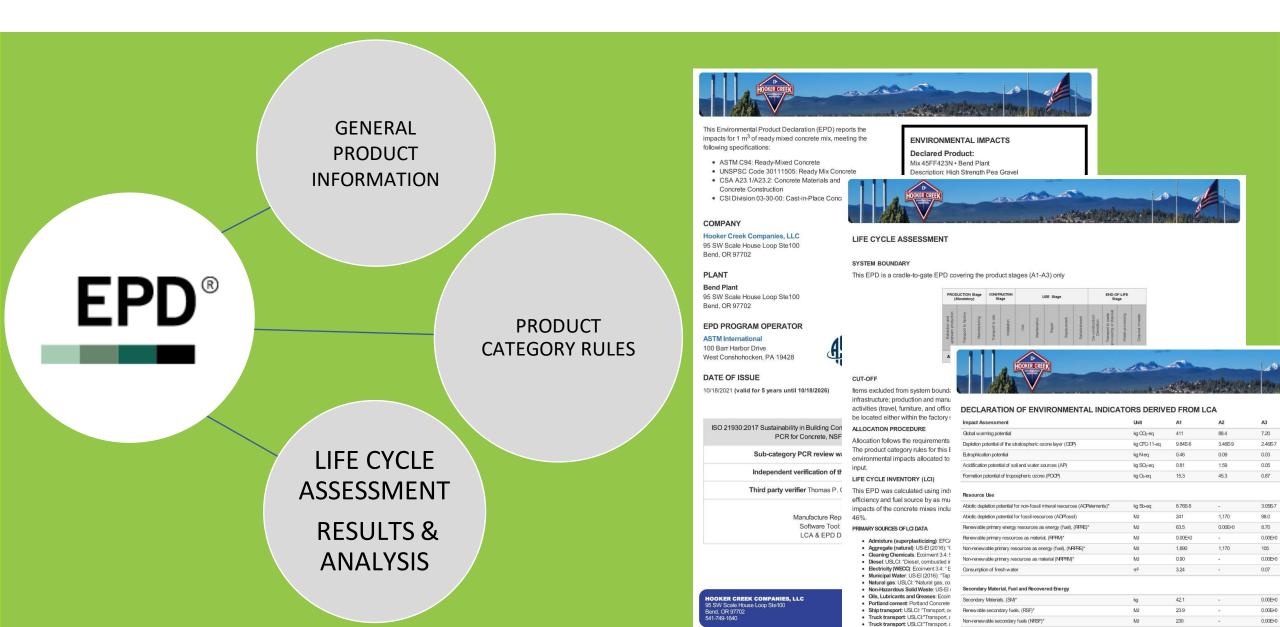
Program Operator NSF International National Center for Sustainability Standards Valid through March 31, 2025 nccs@nsf.org

ASTM: https://www.astm.org/CERTIFICATION/EpdAndPCRs.html



Material Emissions Database

ICE-UK (Inventory of carbon and energy, United Kingdom)


https://circularecology. com/embodied-carbonfootprint-database.html

It starts with Environmental Product Declarations (EPDs)

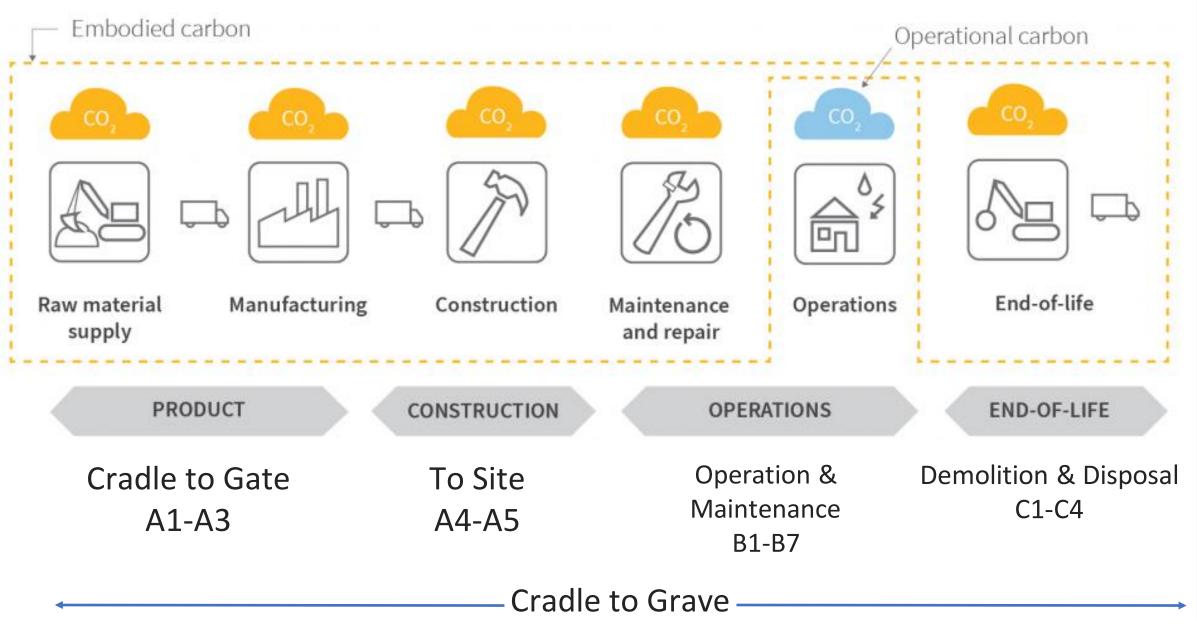
What are EPD Standards?

- The concept of EPDs is based on the ISO 14025 and ISO 21930 standards, which provides the rules for the development of EPDs in the construction sector.
 - (Internationally recognized)
- EPDs quantify a wide array of environmental information on the life cycle of a product.
- EPDs can be used for all types of goods and services.
- EPDs contain verified environmental information, based on the principles of ISO standards development - consensus-based, voluntary, market-relevant

Start asking suppliers / manufacturers for them now

BRICK SIDING EPD - Generic

Table 7. Life-cycle results for clay brick production


Metric	Cradle-to-gate total, per cubic meter of brick	Unit
Environmental impact		
Global Warming Potential	503	kg CO₂ eq
Acidification Potential	1.52	kg SO₂ eq
Eutrophication Potential	0.888	kg N eq
Smog Potential	15.6	kg O₃ eq
Ozone Depletion Potential	0.0000629	kg CFC-11 eq
Total primary energy consumption	· · · · · · · · · · · · · · · · · · ·	
Nonrenewable Fossil	8,210	MJ
Nonrenewable Nuclear	516	MJ
Renewable (Solar, Wind, Hydroelectric and Geothermal)	38.3	MJ
Renewable (Biomass)	140	MJ
Material resources consumption		
Nonrenewable Material Resources	2,280	kg
Renewable Material Resources	0.00298	kg
Net Fresh Water (Inputs Minus Outputs)	2,810	L
Total waste generation		
Non-Hazardous Waste Generated	2.56	kg
Hazardous Waste Generated	0.00674	kg

503 Kg CO₂e per cubic meter of brick

- Production only
- Does not consider transport & installation
- Calculate the amount of brick per house model
- Consider a waste factor
- It may vary by manufacturer

https://info.nsf.org/Certified/Sustain/ProdCert EPD10447.pdf

Building Lifecycle

What information can we find? **SECTION 4 (LCA ANALYSIS)**

DECLARATION OF ENVIRONMENTAL INDICATORS DERIVED FROM LCA

Impact Assessment	Unit	A1	A2	A3	Total
Global w arming potential	kg OO₂-eq	411	88.4	7.20	507
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC-11-eq	9.84E-6	3.46E-9	2.46E-7	1.01E-5
Eutrophication potential	kg N-eq	0.46	0.09	0.03	0.57
Acidification potential of soil and water sources (AP)	kg SO₂-eq	0.81	1.59	0.05	2.45
Formation potential of tropospheric ozone (POCP)	kg O3-eq	15.3	45.3	0.87	61.4
Resource Use					
Abiotic depletion potential for non-fossil mineral resources (ADPelements)*	kg Sb-eq	8.76E-5	5	3.05E-7	8.79E-5
Abiotic depletion potential for fossil resources (ADPfossil)	M	241	1,170	98.0	1,510
Renewable primary energy resources as energy (fuel), (RPRE)*	MJ	63.5	0.00E+0	8.70	72.2
Renewable primary resources as material, (RPRM)*	MJ	0.00E+0	2 0	0.00E+0	0.00E+0
	10454	2010/02/02	51501066454	ALC: NOT	THEFT

GLOBAL WARMING POTENTIAL (kg CO2e)

Covers carbon emissions in product stages A1 – A3

What are EPD Standards? A1-A6 + B6(30yr) = 65% of Total Carbon

emissions

Pro	De		Constr		bound	ary (X =		d in Ica; Use stag		module r	not decl	ared; Ml		odule no		Benefits and loads beyond the system bounduaries
Raw material supply	Transport	Manufacturing	Iransport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
Al	A2	A3	A4	A5	B1	B2	83	84	в5	86	B7	a	C2	а	C4	D
×	x	x	×	x	x	MND	MNR	MNR	MNR	MND	AND	x	x	MND	x	x

What stages & inputs should be considered?

VINYL SIDING EPD - Generic

		P	art B- Lif	e Cycle	Impact	Assess	ment R	esults				
Functio	nal Unit: 100 square feet											
Part B.1	TRACI 2.1	A1	A2	A3	A4	A5	B2	C1	C2	C3	C4	Units
GWP	Global warming potential	4.47E+ 01	1.27E+0 0	5.07E +00	9.40E- 01	7.66E- 01	4.79E- 01	0.00E +00	3.58E- 02	0.00E +00	9.75E +00	kg CO ₂ Eq.
ODP	Depletion potential of the stratospheric ozone layer	2.61E- 06	7.55E- 08	1.46E- 07	3.59E- 11	5.11E- 08	2.90E- 08	0.00E +00	1.37E- 12	0.00E +00	2.67E- 07	kg CFC 11 Eq.
AP	Acidification potential	1.93E- 01	9.86E- 03	3.90E- 02	5.61E- 03	4.17E- 03	2.46E- 03	0.00E +00	2.14E- 04	0.00E +00	2.33E- 02	kg SO ₂ Eq.
EP	Eutrophication potential	4.86E- 02	1.14E- 03	5.45E- 03	3.13E- 04	3.33E- 03	2.08E- 03	0.00E +00	1.19E- 05	0.00E +00	1.54E- 02	kg N Eq.
POCP	Photochemical ozone creation potential	1.73E+ 00	2.78E- 01	3.19E- 01	1.54E- 01	3.46E- 02	2.93E- 02	0.00E +00	5.85E- 03	0.00E +00	2.37E- 01	kg O₃ Eq.
ADPF	Abiotic depletion potential for fossil resources	1.37E+ 02	2.23E+0 0	5.42E +00	1.69E +00	6.47E- 01	3.63E- 01	0.00E +00	6.45E- 02	0.00E +00	2.69E +00	MJ surplus energy
Part B.2	2 CML	A1	A2	A3	A4	A5	B2	C1	C2	C3	C4	Units
GWP	Global Warming Potential	4.47E+ 01	1.27E+0 0	5.07E +00	9.40E- 01	7.66E- 01	4.79E- 01	0.00E +00	3.58E- 02	0.00E +00	9.75E +00	kg CO2 Eq.
ODP	Depletion potential of stratospheric ozone layer	2.43E- 06	5.64E- 08	1.15E- 07	3.55E- 11	3.89E- 08	2.22E- 08	0.00E +00	1.35E- 12	0.00E +00	1.88E- 07	kg CFC-11 Eq.
AP	Acidification potential	1.93E- 01	9.86E- 03	3.90E- 02	5.61E- 03	4.17E- 03	2.46E- 03	0.00E +00	2.14E- 04	0.00E +00	2.33E- 02	kg SO ₂ Eq.
EP	Eutrophication potential	2.81E- 02	1.70E- 03	3.73E- 03	8.21E- 04	1.59E- 03	1.14E- 03	0.00E +00	3.12E- 05	0.00E +00	7.33E- 03	kg (PO ₄) ³⁻ Eq.
POCP	Photochemical ozone creation potential	1.24E- 02	3.03E- 04	2.46E- 03	2.14E- 04	2.72E- 04	7.57E- 04	0.00E +00	8.13E- 06	0.00E +00	9.88E- 04	kg ethane Eq.

All use phase stages have been considered and only maintenance (B2) contains non-zero environmental impacts, which is reported above.

$51 \text{ Kg CO}_2 e \text{ per } 100 \text{ ft}^2$

- Provided by the industry association
- We don't consider transport to site & installation
- Calculate the amount of siding per house model
- Consider the "overage" factor when calculating quantities
- It may vary by manufacturer

Industry Averaged Vinyl Siding (0.040" Double 4.5")

ENVIRONMENTAL PRODUCT DECLARATION

CEMENT BOARD SIDING - EPD

Environmental indicator results for the A1 - A3 modules on an aggregated basis and the A4 module are shown in the following tables for the declared unit of 1m² of fibre cement panel.

Modules A	dules A1 - A3		Unit	Hardie [®] Panel	Hardie [®] Plank	Hardie [®] VL Plank
Climate char	nge - GWP100	GWP	kg CO ₂ -eq	8.94E+00	7.34E+00	1.20E+01
Ozone layer ODP steady	•	ODP	kg CFC11-eq	5.13E-07	4.51E-07	7.39E-07
Acidification average Euro	•	АР	kg SO2-eq	2.75E-02	2.51E-02	3.54E-02
Eutrophicati	on - generic	EP	kg PO4 ³⁻ -eq	4.05E-03	3.44E-03	6.02E-03
Photochemic potential	cal oxidant creation	РОСР	kg ethene-eq	1.51E-03	1.46E-03	2.04E-03
	abiotic resources - timate reserves	ADPE	kg Sb-eq	2.95E-05	2.76E-05	4.33E-05
Depletion of fossil fuels	abiotic resources -	ADPFF	MJ	8.92E+01	8.26E+01	1.32E+02

8.9 Kg CO₂e per 1 m²

ENGINEERED WOOD SIDING - EPD

TABLE 6 LCIA Results Summary for Cradle-to-Gate production of 1 m³ of LP[®] SmartSide[®] products.

CORE MANDATORY IMPACT INDICATOR			A1: EXTRACTION	A2: RAW MATERIAL TRANSPORT	A3: Manufacturing	A4: PRODUCT Transport	TOTAL	
Global warming potential	GWP _{BIO}	kg CO ₂ e	(1,756.19)	27.49	2,076.01	74.24	421.55	347.5 Kg CO ₂ e / m ³ A1-A3
Global warming potential	GWP	kg CO ₂ e	129.86	27.49	189.96	74.24	421.55	
Depletion potential of the stratospheric ozone layer	ODP	kg CFC11e	2.57E-07	6.05E-07	7.27E-06	2.64E-06	0.00	• Note the -(1,756)
Acidification potential of soil and water sources	AP	kg SO ₂ e	0.8409	0.1806	0.9850	0.4915	2.50	Kg for extraction.
Eutrophication potential	EP	kg Ne	0.0732	0.0190	1.1495	0.0566	1.30	 The carbon is
Formation potential of tropospheric ozone	SFP	kg O ₃ e	16.90	5.28	14.76	14.27	51.22	considered to be
Abiotic depletion potential (ADPfossil) for fossil resources	ADPf	MJ, NCV	2,500.91	346.81	2,267.14	941.01	6,055.87	sequestered.
Fossil fuel depletion	FFD	MJ Surplus	3.69E+02	5.15E+01	2.10E+02	1.39E+02	769.37	

Wood is given credit for the CO₂ that has been absorbed and stored over the years

WOOD SIDING EPD - Red Cedar

			Production	Constru	uction	Use		End-of-li	fe	
Impact Category	Unit	Total	Tradle-to-gate Product Manufacturing	Transport to Customer	GV Installation	Use , Maintainance, Repair 81'B5	Dismantling	Q Waste Transport	Disp osal	•
										•
Global Warming	kg CO ₂ eq	5.93	2.14	0.20	1.86	0.70	0.00	0.13	0.89	
Ozone depletion	kg CFC-11 eq	5.24E- 07	1.112.07	4.68E-11	2.89E-07	8.95E-08	0.00	3.02E-11	1.89E-09	
Acidification	kg SO ₂ eq	0.04	0.02	3.33E-03	0.01	3.55E-03	0.00	8.14E-04	2.11E-03	
Eutrophication	kg N eq	0.02	0.01	2.21E-04	0.01	1.24E-03	0.00	5.81E-05	1.72E-03	
Smog	kg O₃ eq	0.63	0.28	0.11	0.11	0.04	0.00	0.02	0.07	

2.14 Kg CO₂e per 1 m²

- A1-A3 combined
- Sequestration of carbon already accounted for

https://www.realcedar.com/static/6e57fdcd0c8d7a7 e440290b0b745d301/Typical-Cedar-Siding-EPD-Febuary-2018.pdf

CLADDING SUMMARY(FROM BEAM TOOL) * BASED ON BASE HOUSE Quantities*

CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO2e)
EXTERIOR WAL	L CLADDING							
COMMON BRICK								
	Brick, Clay / Interstate / Avg Face Brick / 3-5/8" x 2-3/4" x 7-5/8" (92 x 70 x 194 mm) incl. 3/8" mortar	2,699.	7 ft ²	100%		11,911	11,911	0
	Brick, Clay, Generic Modular / 3-5/8" x 2-3/4" x 7-5/8" incl. 3/8" mortar / Brick Industry Association / [Industry Avg US-Canada]	2,699.	7 ft ²	100%		11,850	11,850	0
	Brick, Cement / MidWest / Architectural Face Brick / 3-5/8" x 2-3/4" x 7-5/8" (92 x 70 x 194 mm) incl. 3/8" mortar	2,699.	7 ft ²	100%		9,080	9,080	0
	Brick, Calcium Silicate / Arriscraft / Contemporary Brick / 3-1/8" x 3-1/2" x any length, incl. mortar and ties	2,699.	7 ft ²	100%		7,559	7,559	0
ACRYLIC STUCCO								
	Synthetic Stucco (Acrylic) / Sto / Stolit Freeform & Freeform Dark Colors (avg)	2,699.	7 ft ²	100%		12,766	12,766	0
	Synthetic Stucco (Acrylic) / Sto / Stolit 1.5 & 1.5 Dark Colors (avg)	2,699.	7 ft ²	100%		8,227	8,227	0
	Synthetic Stucco (Acrylic) / Sto / Stolit 1.0 & 1.0 Dark Colors (avg)	2,699.	7 ft ²	100%		7,223	7,223	0
FIBER CEMENT SID	ING							
	Fiber Cement siding / Cembrit / Solid & Express / 8 mm (5/16")	2,699.	7 ft ²	100%		6,078	6,357	279
	Fiber Cement siding / Cembrit / Patina / 8 mm (5/16")	2,699.	7 ft ²	100%		2,526	2,806	279
VINYL SIDING								
	Vinyl Siding / Vinyl Siding Institute / 0.040" Double 4.5" [Industry Avg US & CA]	2,699.	7 ft ²	100%		1,349	1,349	0
WOOD SIDING								
	Cedar Siding / Western Red Cedar Lumber Assn / 1x6 Boards [Industry Avg CA]	2,699.	7 ft ²	100%		432	432	0
	Wood / SPF / 3/4" boards / AWC & CWC [Industry Avg US & CA]	2,699.	7 ft ²	100%		302	302	0

From 302 Kg CO₂e for wood siding to 12,766 Kg CO₂e for Stucco

NORTH AMERICAN SOFTWOOD PLYWOOD EPD

ENVIRONMENTAL PRODUCT DECLARATION

North American Softwood Plywood North American Structural and Architectural Wood Products

3.1. Life Cycle Impact Assessment Results

Table 8. Impact Assessment Results for 1 m³ of North American Plywood

TRACI v2.1	Τοται	A1	A2	A 3
GWP _{TRACI} [kg CO ₂ eq]	219.32	70.03	10.28	139.00
GWP _{BID} (incl. biogenic carbon) [kg CO ₂ eq]	219.32	(2,057.39)	10.28	2,266.42*
ODP [kg CFC-11 eq]	8.66E-06	8.26E-07	1.43E-08	7.82E-06
AP [kg SO ₂ eq]	1.07	0.42	0.07	0.58
EP [kg N eq]	0.87	0.10	0.01	0.77
POCP [kg O ₃ eq]	22.44	7.53	1.88	13.03
ADP _{fossil} [MJ, LHV]	3,402.99	1,560.69	131.97	1,710.32
Fossil fuel depletion [MJ surplus]	429.32	121.64	19.76	287.92

*A3 Results for GWPBIO include downstream emissions that occur in information module A5 and C3/C4. See Table 11 for detailed LCI of biogenic carbon.

https://awc.org/wp-content/uploads/2021/11/AWC EPD NorthAmericanSoftwoodPlywood 20200605.pdf

According to ISO 14025, EN 15804 and ISO 21930:2017

219.3 Kg CO₂e / m³ A1-A3

NORTH AMERICAN SOFTWOOD LUMBER EPD

ENVIRONMENTAL PRODUCT DECLARATION

North American Softwood Lumber North American Structural and Architectural Wood Products

3.1. Life Cycle Impact Assessment Results

Table 9. Impact Assessment Results for 1 m³ of North American Softwood Lumber

TRACI v2.1	TOTAL	A1	A2	A3
GWP _{TRACI} [kg CO ₂ eq]	63.12	10.55	10.01	42.56
GWP _{BID} (Incl. biogenic carbon) [kg CO2 eq]	63.12	(2,042.32)	10.01	2,095.43*
ODP [kg CFC-11 eq]	2.8E-06	1.1E-07	1.0E-08	2.7E-06
AP [kg SO ₂ eq]	0.52	0.14	0.08	0.30
EP [kg N eq]	0.25	0.02	0.01	0.23
POCP [kg O ₃ eq]	13.68	4.43	2.14	7.11
ADP _{fossil} [MJ, LHV]	833.37	141.22	136.57	555.58
Fossil fuel depletion [MJ surplus]	101.51	21.58	19.79	60.14

*A3 Results for GWPBIO include downstream emissions that occur in information module A5 and C3/C4. See Table 12 for detailed LCI of biogenic carbon.

According to ISO 14025, EN 15804 and ISO 21930:2017

63.12 Kg CO₂e / m³

A1-A3

Wood is

Good

XPS EXTERIOR INSULATION - EPD

ENVIRONMENTAL PRODUCT DECLARATION

FOAMULAR® NGX™ XPS Insulation

4.1. Life Cycle Impact Assessment Results

Results by functional unit are available in this section. To convert to results for a particular product, please see section 4.3.

Table 9. LCIA Results for North America (TRACI) for FOAMULAR® NGX^{rm} XPS Insulation (1 m², R_{SI}-1)

TRACI v2.1	A1 - A3	A4	A5	81	B2 - B7	C1	C2	C3	C4	L
GWP 100 [kg CO2 eq]	6.92E+00	1.44E-01	2.24E-03	2.67E+00	MND	MND	2.10E-02	MND	1.40E-02	1
our [ng ci c-11 eq]	2.002-03	3.56E-08	1.21E-10	0.00E+00	MND	MND	5.19E-09	MND	2.02E-09	
AP [kg SO2 eq]	1.57E-02	8.97E-04	3.19E-06	0.00E+00	MND	MND	1.31E-04	MND	3.66E-05	
EP [kg N eq]	7.79E-03	1.79E-04	1.06E-06	0.00E+00	MND	MND	2.61E-05	MND	7.80E-06	1
POCP [kg O3 eq]	1.88E-01	2.43E-02	8.67E-05	3.72E-04	MND	MND	3.55E-03	MND	8.69E-04	
ADP _{fassi} [MJ, LHV]	9.56E+00	3.20E-01	1.10E-03	0.00E+00	MND	MND	4.66E-02	MND	1.87E-02	1

[GWP 100 - Global Warming Potential]; [ODP - Ozone Depletion Potential]; [AP - Acidification Potential]; [EP - Eutrophication Potential]; [POCP - Smog Formation Potential]; [ADP_{fosse} - Abiotic Resource Depletion Potential of Non-renewable (fossil) energy resources]

> https://dcpd6wotaa0mb.cloudfront.net/mdms/dms/Shared/10 024576/FOAMULAR-NGX-XPS-Insulation-EPD_UL_corrected.pdf?v=1646664386000

According to ISO 14025, EN 15804 and ISO 21930:2017 6.92 Kg CO₂e / m² A1-A3

- Significant advancements are being made
- GWP of XPS has been reduced by 75%
- Underscores importance of updating EPD info annually

EPD Summary

- Start asking manufacturers and suppliers for their EPDs
- For now, look at Cradle to Gate of manufacture: A1 A3
- Many EPDs are done by industry associations generic
- Most carbon accounting software tools are pre-populated with common EPDs.
- They are one tool to use in making material choices
- Manufacturers are making improvements now
- There are significant differences within the same element category
 - Insulation
 - Cladding
 - etc.

Impact Category	Unit	Total	Production Cradle-to-gate Product Manufacturing A1, A2, A3
Global Warming	kg CO, eq	5.93	2.14
Ozone depletion	kg CFC-11 eq	5.24E- 07	1.44E-07
Acidification	kg SO ₂ eq	0.04	0.02
Eutrophication		0.02	0.01

kg O₃ eq

0.63

0.28

Smog

For a comprehensive listing of EPDs: <u>https://www.buildingtransparency.org/</u>

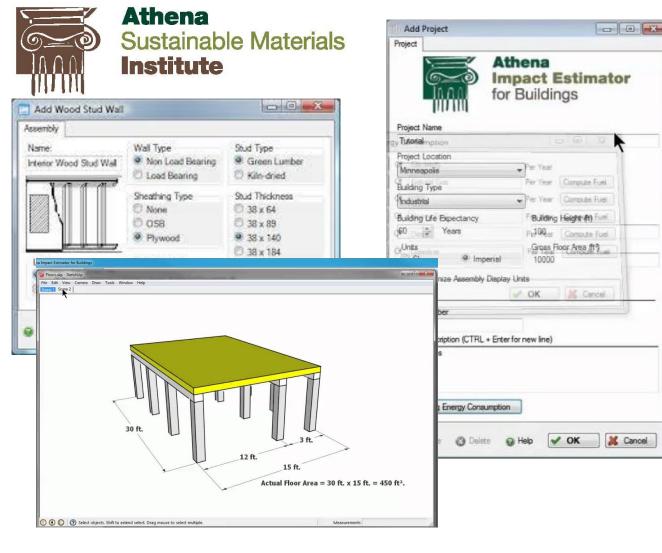
Carbon Accounting Metrics and Tools

Carbon Emission Assessment Tools: LCA And More...

WBLCA Software

Athena Impact Estimator for Buildings

Stand-alone desktop app	Plug-in for Autodesk Revit	Web-based, with BIM integration
Free!	\$695US/y plus Revit (\$995US for premium)	Starter: \$790US/y Business: \$1690US/y Expert: \$3000US/y
ISO14040/44 compliant, TRACI impact assessment, can be used for LEED v4.1	ISO14040/44 compliant, TRACI impact assessment, can be used for LEED v4.1	ISO14040/44 compliant, TRACI impact assessment, can be used for LEED v4.1
https://calculatelca.com/software/ impact-estimator/	https://www.choosetally.com/	https://www.oneclicklca.com/

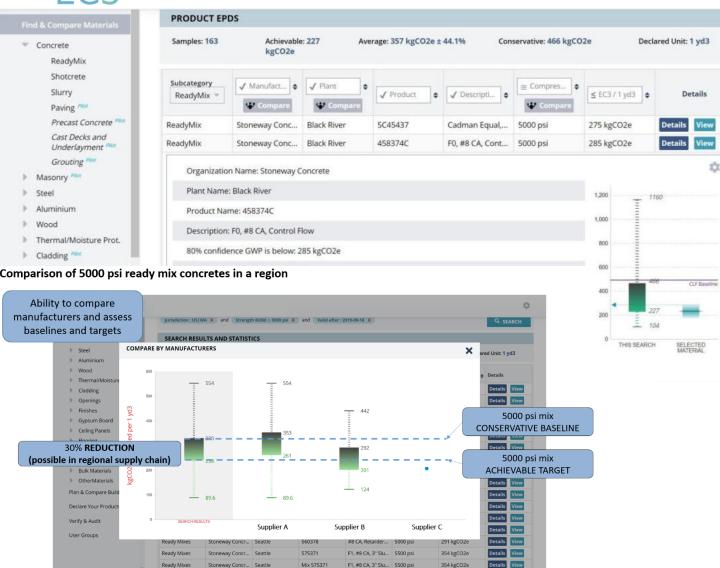

There are Options for Estimating Embodied Carbon

FEATURES	BEAM	Athena Impact Estimator	EC3			
TYPE	Residential, Multi- Unit/Apartments, Townhomes (Small – Medium size buildings)	Warehouses Material Datal				
EFFECTIVENESS	Excellent	Good	Excellent			
EASE OF USE	Easy	Hard	Hard			
UPDATES & NEW DATA	Yes	Infrequent	Yes			
Energy Modelling Compatibility	No	No	No			

- Each have advantages and challenges
- All are being refined and enhanced
- New EPDs will be added over time.
- Energy use or Operational Carbon is typically not included

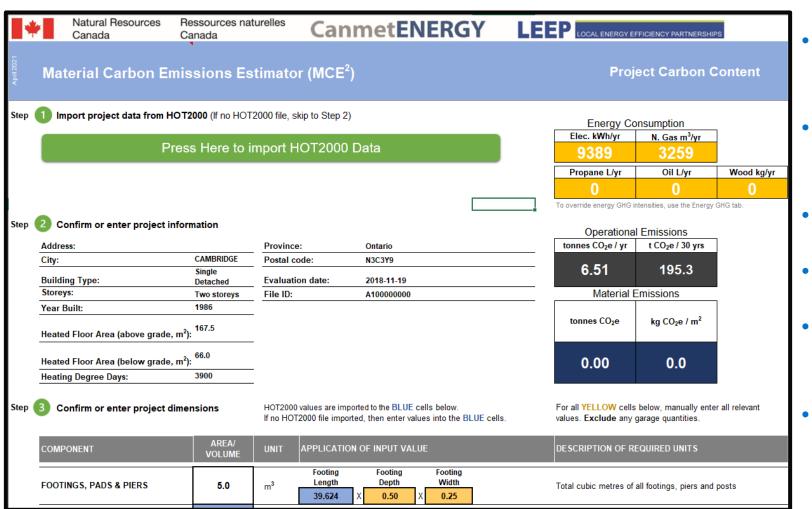
Choose one to get consistent comparisons

Athena Impact Estimator

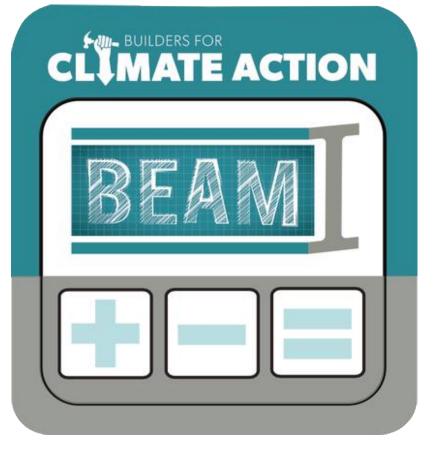


The Estimator takes into account the environmental impacts of:

- Full LCA Tool
- Material manufacturing (resource extraction, transportation, and recycled content)
- On-site construction, building type and assumed lifespan
- Maintenance and replacement effects
- Demolition and disposal
- This program has a lot of features adding to the complexity of the program, but provides a very detailed analysis of results.


EC3 Calculator

The Embodied Carbon in Construction Calculator (EC3) is a tool that allows benchmarking, assessment and reductions in embodied carbon, focused on the upfront supply chain emissions of construction materials


- Free and easy to use
- Contains the largest source of EPDs (Worldwide)
- Easily compare different materials and search for brands
- Software level: Intermediate difficulty
- Not intended for whole building assessments

NRCAN MCE2 Carbon Estimator

- Efficient for residential construction and small buildings
- Contains a range of common materials used in North America
- Easy to learn and navigate
- Data is summarized effectively
- HOT2000 Energy Simulation
 compatible
- Preferred calculator for residential construction in Canada

BEAM Estimator

The Building Emissions Accounting for Materials tool helps designers and builders make informed climate smart choices

- Free (contributions encouraged) and easy to use
- Simple selection of building materials
- Offers alternative "green" choices and comparisons
- On-line training
- Designed specifically for low and mid-rise residential construction

The BEAM Estimator is used for all case studies in this workshop

What's included in the BEAM model

Structure & Finishes

CLIMATE ACTION

Not: Furnishings, fixtures, appliances, exterior elements

Calculating Embodied Carbon Estimates

MATERIAL CARBON PROJECT RESULTS

PROJECT INFORMATION

Project Name Design Firm(s) Engineering Firm(s) Builder / Developer	EEBA Basement (Brick)	Construction Year Number of Bedrooms Stories Above Grade	2
Development Project		CONDITIONED AREA	
Street Address		Above Grade	3285 ft ²
City		Below Grade	1467 ft ²
Province / State		Total	4752 ft ²
Country	United States		
		GROSS AREA	
Building Type	Single Detached House	Excluding Garage	4810 ft ²
Construction Type	New Construction	Garage	390 ft ²
Project Stage	Construction in Progress	Total	5200 ft ²

Very similar to energy modelling and HVAC design processes

BEAM FOR MATERIALS Project Information		Input Units: Imperial	Input Legend: Required for savin Used for material Non-essential Read-only		
Project Name	2 Story Sample House (CZ5)	Construction Yea	r		
Designer		Number of Bedro	oms		
Engineer		Stories Above Gr	ade	2	
Builder / Developer		Total Floor Area		5200	ft²
Development Project		Above Grade Con	ditioned Area	3285	ft²
Address		Below Grade Con	ditioned Area	1467	ft ²
City					
Province / State (Can./US only)	~				
Country	United States 🔹		roject Info		
Building Type	Single Detached House	and	istics		
Construction Type	New Construction -		_		EEBA
Project Development Stage	Construction in Progress •				

Enter Dimensions

DIMENSION NAME	QTY	UNIT	DESCRIPTION	USED TO CALCULATE TAKE-OFFS FOR
CONTINUOUS FOOTINGS VOLUME	37.	5 yd³ [Length (ft) Height (in.) Width (in.) 169.17 X 36.00 X 24.00 Exclude: garage	Continuous (aka "strip") foundation wall footings (exterior and interior)
COLUMN PADS & PIERS VOLUME	1.	yd³	otal volume of discontinuous column footings, pad, piers, etc.	Discontinuous footing elements aside from continuous footings (ext. and int.)
FOUNDATION WALL AREA	1440.	ft²	otal foundation wall surface area (centerline length x height) ncludes: basement, party walls. Excludes: openings, garage foundation	Foundation & basement wall insulation (ext. and int.), interior framing, and wall cladding
FOUNDATION SLAB AREA	1702.	ft²	otal foundation slab surface area xcludes: garage slab	Aggregate base, sub-slab insulation, slab, and basement flooring
EXTERIOR WALL AREA	2699.	ft²	ourface area of exterior walls. Includes: gable ends. Excludes: window & door openings, party walls, garage walls	Framing, insulation, sheathing, exterior cladding, and interior cladding of exterior walls
WINDOW AREA	384.	ft²	rea of window frames (preferrable) or rough openings ncludes: full glazing area, skylights. Excludes: garage windows	Windows of main building
PARTY WALL AREA	0.	ft²	Vall area that partitions this unit from others ypical for townhouses & apartment units	Party wall framing, insulation, sheathing, and interior cladding
INTERIOR WALL AREA	2407.	ft²	ne side only (i.e. centerline) of all interior walls. Includes: interior door area. Excludes: exterior, garage partition and party walls	Interior wall framing and cladding (assumes both sides of walls are finished by default)
FRAMED FLOOR AREA	3284.	ft²	bove grade flooring area xcludes: basement floor slab, and floor openings	Floor framing, subfloor, floor insulation, finish flooring
FINISHED CEILING AREA	1904.	ft²	otal finished ceiling area ncludes: basement ceilings. Excludes: garage ceilings	Ceiling cladding
ROOF INSULATION AREA	1904.	ft²	rea associated with roof insulation ypically equal to the ceiling area directly below the roof	Flat or sloped roof insulation
ROOF SURFACE AREA	2668.	ft²	coofing surface area. Calculated with roof pitch xcludes: overhangs	Roof framing, decking, roofing, and insulation parallel to roof surface
TIMBER FRAMING VOLUME	2	yd³	otal volume of wood in heavy timber posts & beams eparate inputs for steel found in Structural Elements section	Mass timber framing elements

Select Construction Elements from Drop-down menus

	FOUNDATION WALLS				SUBTOT	AL (kg COre)	c	IMATE	DEGRA
		SECTION COMPLETE				,645		ACTION	DEPIN
CATEGORY	MATERIAL	QUANTITY	UNITS			(ltg CO.e)	(hg CO.4)	STORAGE (bg CO.4)	FOOTNOTE
CONCRETE FO	UNDATION WALLS	WALL THICKNESS	9.0	in					
CONCRETE - <=25	MPA - CANADA					1.			
	Concrete - 0-25 MPa, 0-14% FA/SL, GU / CRMCA [Industry Avg CA]	1,744.4	ft*	100%		11,870	11,870	0	Expert 2012
	Concrete - 0-25 MPa, Canadian Benchmark Average / CRMCA [Industry Arg CA]	1,744.4	ft*	100%		11,282	11,282	0	Digital 2022
	Concrete - 0-25 MPa, 15-29% Fly Ash, GU / CRMCA [industry Avg (CA]	1,744.4	ft ⁴	100%		10,711	10,711	0	Express 2022
	Concrete - 0-25 MPa, 25-34% Stag, GU / CRMCA [Industry Avg CA]	1,744.4		100%	ō	9,715	9,715	0	Expend 2022
	Concrete - 0-25 MPa, 30-40% Fly Ash, GU / CRMCA [Industry Avg CA]	1,744.4		100%	Ō	9,458	9,458	0	Experied 2002
	Concrete - 0-25 MPa, 35-50's Stag, GU / CRMCA [Industry Arg CA]	1,744.4		100%	ō	8,854	8,854	0	Explicit 2022
CONCRETE - 26-3	0 MPA - CANADA								
	Concrete - 26-30 MPa, 0-14% FA/SL, GU / CRMCA [industry Avg CA]	1,744.4	ft ^s	100%		13,348	13,348	0	Expred 2022
	Concrete - 26-30 MPa, Canadian Benchmark Average / CRMCA [Industry Avg CA]	1,744.4	ft!	100%		12,955	12,955	0	Expired 2022
	Concrete - 26-30 MPa, 15-29% Fly Ash, GU / CRMCA [industry Arg CA]	1,744.4	ft ^s	100%		12,021	12,021	0	Expert 2022
	Concrete - 26-30 MPa, 25-34% Stag, GU / CRMCA [Industry Avg CA]	1,744.4	ft ^e	100%		10,881	10,881	0	Expired 2022
	Concrete - 26-30 MPa, 30-40% Fly Ash, GU / CRMCA [Industry Avg CA]	1,744.4		100%	Ō	10,587	10,587	0	Expert 2022
	Concrete = 26-30 MPa, 35-50% Slag, GU / CRMCA [Industry Avg CA]	1,744.4		100%		9,895	9,895	0	Expert 2002
CONCRETE - 31-3	5 MPA - CANADA				111111		100000		
	Concrete - 31-35 MPa, 0-14% FA/SL, GU / CRMCA (Industry Avg CA)	1,744.4	ft=	100%		15,493	15,493	0	Dpinet 2002
	Concrete - 31-35 MPa, Canadian Benchmark Average / CRMCA [Industry Avg CA]	1,744.4	ft ⁱ	100%		15,451	15,451	0	Expend 2022
	Concrete - 31-35 MPa, 15-29% Fly Ash, GU / CRMCA [Industry Avg CA]	1,744.4	ft ^s	100%		13,921	13,921	0	famed 2022
	Concrete - 31-35 MPa, 25-34% Stag, GU / CRMCA [Industry Avg CA]	1,744.4		100%	ō	12,571	12,571	0	Expend 2022
	Concrete - 31-35 MPa, 30-40% Fly Ash, GU / CRMCA [industry Avg CA]	1,744.4		100%	ō	12,222	12,222	0	Expres 2022
	Connector - No. NO. 14Do. NO. EAN. Minor dis C. COMPER Distances From CAL	1.744.4		1005	0	11,102	11,100	0	
CONCRETE - <= 2	500 PSI - N.AMERICA	1.4.4			and the	Sec. 1	A STREET		
00443130300101000	Concrete - 0-2500 psi, Standard mix / NRMCA [Industry Avg US & CA]	1,744.4	ft ^a	100%		11,471	11,471	0	
	Concrete - 0-2500 psi, 30-39% FA/SL / NRMCA [industry Avg US & CA]	1,744.4		100%	ă	8,974	8,974	0	

Select Construction Elements from Drop-down menus

	FOUNDATION WALLS				SUBTOT	AL (kg CO ₂ e)	С	
		SECTION COMPLETE!			11	,456		ACTION
CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO ₂ e)
MINERAL WOOL BATT	INSULATION							
	Mineral wool batt / Owens Corning / Thermafiber UltraBatt / R 4.3/inch	1,440.6	ft²	100%		1,037	1,037	0
	Mineral wool batt / Rockwool / ComfortBatt R24 (5.5") / R 4.4/inch	1,440.6	ft²	100%		442	442	0
-	Mineral wool batt / [BEAM Avg]	1,440.6	ft²	100%		439	439	0
	Mineral wool batt / Rockwool / ComfortBatt R15 (3.5") / R 4.3/inch	1,440.6	ft²	100%		340	340	0
	Mineral wool batt / Rockwool / Safe'n'Sound, ComfortBatt / R 3.8/inch	1,440.6	ft²	100%		340	340	0
	Mineral wool batt / Rockwool / ComfortBatt R14 (3.5") / R 4.0/inch	1,440.6	ft²	100%		306	306	0
	Mineral wool batt / Rockwool / ComfortBatt R22 (5.5") / R 4.0/inch	1,440.6	ft²	100%		306	306	0
	Mineral wool batt / Rockwool / ComfortBatt R24 SS (6" Steel Studs) / R 4.0/inch	1,440.6	ft²	100%		306	306	0
MINERAL WOOL LOOS	E FILL INSULATION							
	Mineral wool loose fill / NAIMA / R 3/inch [Industry Avg N.America]	1,440.6	ft²	100%		404	404	0
FIBERGLASS LOOSE F								
	Fiberglass loose fill / CertainTeed / InsulSafe, Optima, TruComfort / R 2.6/inch	1,440.6	ft²	100%		334	334	0
	Fiberglass loose fill / ~R2.6/inch [BEAM Avg]	1,440.6	ft²	100%		260	260	0
	Fiberglass loose fill / Owens Corning / AttiCat, ProCat, ProPink / R 2.8/inch	1,440.6	ft²	100%		255	255	0
	Fiberglass loose fill / Knauf / Jet Stream ULTRA / R 2.2/inch	1,440.6	ft²	100%		189	189	0
FIBERGLASS BATT IN	SULATION							
	Fiberglass batt / CertainTeed / Sustainable Insulation / R 3 6/inch	1,440.6	ft2	100%		244	244	0
	Fiberglass batt / R 3.6/inch [BEAM Avg]	1,440.6	ft²	100%		174	174	0
	Fiberglass batt / Knaut / EcoBatt / R 3.6/Inch	1,440.6	ft²	100%		158	158	0
	Fiberglass batt / Owens Corning / EcoTouch Pink batt and roll / R 3.6/inch	1,440.6	ft²	100%		120	120	0

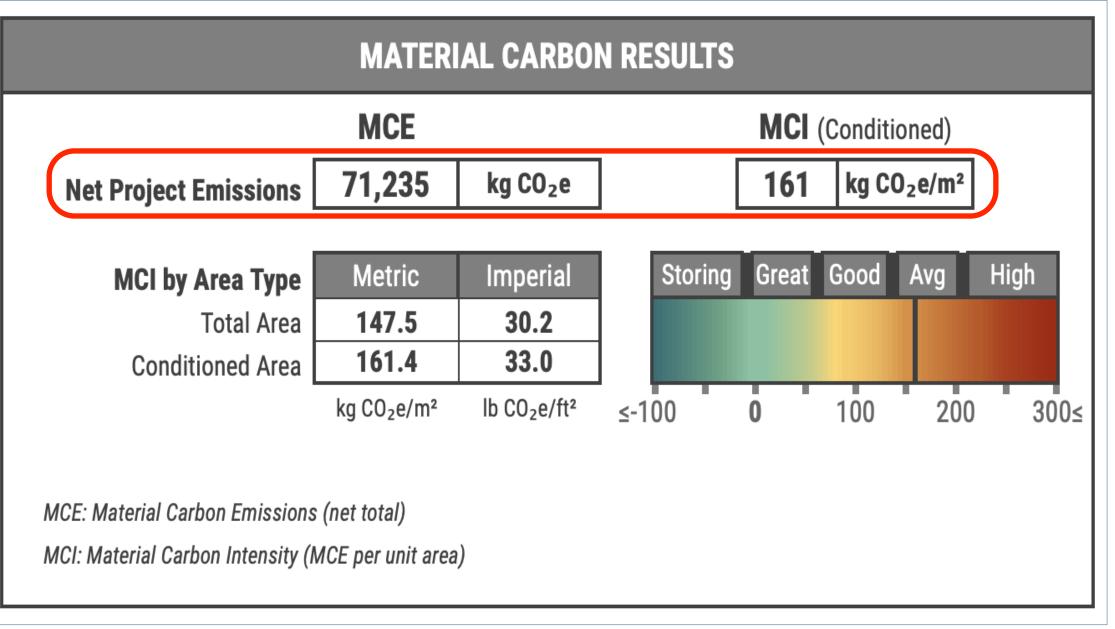
	STRUCTURAL ELEMENTS					AL (kg CO ₂ e)		
		SECTION COMPLETE!	\checkmark			441		ACTION
CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO₂e)
STRUCTURAL TIN	/BER							
STRUCTURAL COMPO	SITE LUMBER							
	Laminated veneer lumber (LVL) / AWC & CWC [Industry Avg US & CA]	1.4	yd³	59%	\checkmark	394	394	0
	Laminated veneer lumber (LVL) / RedBuilt / RedLam	2.4	yd³	100%		664	664	0
	Laminated strand lumber (LSL) / AWC & CWC [Industry Avg US & CA]	2.4	yd³	100%		507	507	0
	Glued Laminated Timber (Glulam) / AWC & CWC [Industry Avg US & CA]	2.4	yd³	100%		253	253	0
TIMBER FRAMING LUI	MBER							
	Wood / SPF / Lumber by volume / AWC & CWC [Industry Avg US & CA]	1.0	yd³	41%	\checkmark	48	48	0
	Wood / Redwood / Lumber by volume / AWC & CWC [Industry Avg US & CA]	2.4	yd³	100%		70	70	0
STRUCTURAL ST	EEL – WIDE FLANGE BEAMS							
WIDE FLANGE - W150	(US W6)							
	Structural Steel / Wide Flange / W150x30 (US W6x20) / AISC [Industry Avg US]		ft	100%		0	0	0
	Structural Steel / Wide Flange / W150x22 (US W6x15) / AISC [Industry Avg US]		ft	100%		0	0	0
WIDE FLANGE - W200								
	Structural Steel / Wide Flange / W200x71 (US W8x48) / AISC [Industry Avg US]		ft	100%		0	0	0
	Structural Steel / Wide Flange / W200x59 (US W8x40) / AISC [Industry Avg US]		ft	100%		0	0	0
	Structural Steel / Wide Flange / W200x42 (US W8x28) / AISC [Industry Avg US]		ft	100%		0	0	0
	Structural Steel / Wide Flange / W200x36 (US W8x24) / AISC [Industry Avg		f+	100%		٥	0	0

	EXTERIOR WALLS				SUBTOT	AL (kg CO ₂ e)	CLIMATE		
		SECTION COMPLETE!			2	.,170	-	ACTION	
CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO ₂ e)	
LIGHT WOOD FRA	MEWALLS	FRAMING SPACING	16	in					
FRAMING LUMBER – S	PRUCE-PINE-FIR								
	Wood / SPF / 2x8 Lumber / AWC & CWC [Industry Avg US & CA]	2.699.7	ft²	100%		729	729	0	
	Wood / SPF / 2x6 Lumber / AWC & CWC [Industry Avg US & CA]	3,774.2	ft²	140%		773	773	0	
	Wood / SPF / 2x4 Lumber / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		352	352	0	
l	Wood / SPF / 2x3 Lumber / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		251	251	0	
WOOD I-JOIST (T.	JI) STUD FRAMING	FRAMING SPACING		in					
	Wood I joist / TJI 230/360 / 11-7/8" Depth / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		0	0	0	
	Wood I joist / TJI 230/360 / Industry Average Depth / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		0	0	0	
	Wood I joist / TJI 230/360 / 9-1/2" Depth / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		0	0	0	
STRUCTURAL SHE	EATHING								
ORIENTED STRAND BO	JARD (OSB)								
	OSB sheathing / 5/8" / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		966	966	0	
	OSB sheathing / 1/2" / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		773	773	0	
PLYWOOD									
,	Plywood / 3/4" / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		1,048	1,048	0	
,	Plywood / 5/8" / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		875	875	0	
	Plywood / 1/2" / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		699	699	0	
WOOD BOARDS									
	Wood / SPF / 3/4" boards / AWC & CWC [Industry Avg US & CA]	2,699.7	ft²	100%		302	302	0	

	EXTERIOR WALLS				SUBTOT	AL (kg CO ₂ e)		
		SECTION COMPLETE!			2	,170		ACTION
CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO₂e)
FIBERGLASS LOOSE F	ILL INSULATION							
	Fiberglass loose fill / CertainTeed / InsulSafe, Optima, TruComfort / R 2.6/inch	2,699.7	ft²	100%		1,197	1,197	0
	Fiberglass loose fill / ~R2.6/inch [BEAM Avg]	2,699.7	ft²	100%		929	929	0
	Fiberglass loose fill / Owens Corning / AttiCat, ProCat, ProPink / R 2.8/inch	2,699.7	ft²	100%		912	912	0
	Fiberglass loose fill / Knauf / Jet Stream ULTRA / R 2.2/inch	2,699.7	ft²	100%		677	677	0
FIBERGLASS BATT INS	SULATION							
	Fiberglass batt / CertainTeed / Sustainable Insulation / R 3.6/inch	2,699.7	ft²	100%		872	872	0
	Fiberglass batt / R 3.6/inch [BEAM Avg]	2,699.7	ft²	100%		623	623	0
	Fiberglass batt / Knauf / EcoBatt / R 3.6/inch	2,699.7	ft²	100%		566	566	0
	Fiberglass batt / Owens Corning / EcoTouch Pink batt and roll / R 3.6/inch	2,699.7	ft²	100%		430	430	0
HEMP FIBER WOOL IN	SULATION							
	Hemp fiber batt / NaturFibre / Hemp Wool / R 3.7/inch	2,699.7	ft²	100%		-504	1,610	2,115
CELLULOSE INSULATI	ON							
	Cellulose / loose fill / R 3.7/inch / CIMA [Industry Avg US & CA]	2,699.7	ft²	100%		-986	452	1,437
	Cellulose / batt / CMS / EcoCell / R 3.6/inch	2,699.7	ft²	100%		-1,654	452	2,106
	Cellulose / spray applied / R 3.75/inch / International Cellulose Corp. / K-13, ThermoCon	2,699.7	ft²	100%		-1,949	301	2,251
	Cellulose / dense pack / R 3.7/inch / CIMA [Industry Avg US & CA]	2,699.7	ft²	100%		-1,971	904	2,875
WOOD FIBER INSULAT	ION							
	Wood fiber loose fill / GUTEX / ThermoFiber / R 3.6/inch	2,699.7	ft²	100%		-1,351	560	1,910
	Wood fiber batt / GUTEX / ThermoFlex / R 4/inch [EU]	2,699.7	ft²	100%		-1,994	348	2,342
	Wood fiber batt / Steico / SteicoFlex / R 3.8/inch [EU]	2,699.7	ft²	100%		-2,185	406	2,591

	EXTERIOR WALLS				SUBTOTAL (kg CO ₂ e)				
		SECTION COMPLETE!			2	,170		ACTION	
CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO ₂ e)	STORAGE (kg CO₂e)	
CONTINUOUS IN	SULATION	R-VALUE	5.0						
XPS FOAM BOARD (L	EGACY FORMULAS)								
	XPS foam board / DuPont / Styrofoam / HFC-filled / R 5.6/inch	2,699.7	ft²	100%		13,428	13,428	0	
	XPS foam board / Owens Corning / Foamular 250 / HFC-filled / R 5.0/inch	2,699.7	ft²	100%		11,154	11,154	0	
XPS FOAM BOARD (R	EDUCED GWP)								
	XPS foam board / DuPont / Styrofoam / Reduced GWP / R 5.6/inch	2,699.7	ft²	100%		8,061	8,061	0	
SPRAY POLYURETHA	NE FOAM – HIGH DENSITY								
	Spray polyurethane foam - High Density (HFC gas) / R 6.3/inch / SPFA [Industry Avg US & CA]	2,699.7	ft²	100%		3,759	3,759	0	
	Spray polyurethane foam - High Density (HFO gas) / R 6.5/inch / SPFA	2,699.7	ft²	100%		1,093	1,093	0	
XPS FOAM BOARD							e.		
	XPS foam board / Owens Corning / Foamular NGX 250 / R 5.0/inch	2,699.7	ft²	100%		1,793	1,793	0	
	XPS foam board / R 5.0/inch [BEAM Avg US & CA]	2,699.7	ft²	100%		1,083	1,083	0	
	XPS foam board / DuPont / Styrofoam ST-100 / R 5.0/inch	2,699.7	ft²	100%		1,031	1,031	0	
	XPS foam board / SOPREMA / SOPRA-XPS / R 5.0/inch	2,699.7	ft²	100%		425	425	0	
EPS FOAM BOARD									
	EPS foam board / R 4.3/inch, Type XV, 60 psi (400 kPa) / EPS Industry Alliance [Industry Avg US & CA]	2,699.7	ft²	100%		1,718	1,718	0	
	EPS foam board / R 4.0/inch avg [BEAM Avg US & CA]	2,699.7	ft²	100%		1,055	1,055	0	
	EPS foam board / R 4.2/inch, Type IX, 25 psi (170 kPa) / EPS Industry Alliance [Industry Avg US & CA]	2,699.7	ft²	100%		1,054	1,054	0	
EPS FOAM BOARD									
	EPS foam board with graphite / BASF $$ / Neopor / R 4.7/inch, Type IX	2,699.7	7 ft²	100%		755	755	0	
	EPS foam board with graphite / BASF / Neopor / R 4.7/inch, Type II, 15 psi (Type 2, 110 kPa)	2,699.7	7 ft²	100%		610	610	0	

	FLOORS		SUBTOT	AL (kg CO ₂ e)			
		SECTION COMPLETE!		7	,451	ACTIO	
CATEGORY	MATERIAL	QUANTITY UNI	TS %	SELECT	NET EMISSIONS (kg CO ₂ e)	EMISSIONS (kg CO2e)	STORAGE (kg CO2e)
	Wood I joist / TJI 230/360 / 16" Depth / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		1,895	1,895	0
	Wood I joist / TJI 230/360 / 14" Depth / AWC & CWC [Industry Avg US & CA]	3.284.7 ft ²	100%		1,788	1,788	0
	Wood I joist / TJI 230/360 / 11-7/8" Depth / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		1,625	1,625	0
	Wood I joist / IJI 230/360 / Industry Average Depth / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		1,579	1,579	0
	Wood I joist / TJI 230/360 / 9-1/2" Depth / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		1,463	1,463	0
WOOD FLOOR TRUSSE							
	Wood floor truss / Common (Warren, 45 deg) web pattern / Top chord bearing, variable depth / QWEB [Industry Avg CA]	3,284.7 ft ²	100%		1,548	1,548	0
FRAMING LUMBER - S	SPRUCE-PINE-FIR						
	Wood / SPF / 2x12 Lumber / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		691	691	0
	Wood / SPF / 2x10 Lumber / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		568	568	0
	Wood / SPF / 2x8 Lumber / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		445	445	0
	Wood / SPF / 2x6 Lumber / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		338	338	0
SUB FLOORING							
ORIENTED STRAND BO	DARD (OSB)						
	OSB sheathing / 3/4" / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%		1,410	1,410	0
	OSB sheathing / 5/8" / AWC & CWC [Industry Avg US & CA]	3,284.7 ft ²	100%	\checkmark	1,176	1,176	0


	FLOORS			SUBTOT	AL (kg CO ₂ e)	c	BUILDERS FOR
				7	,451		ACTION
CATEGORY	MATERIAL	QUANTITY UN	IITS %	SELECT	NET EMISSIONS (kg CO ₂ e)	EMISSIONS (kg CO₂e)	STORAGE (kg CO₂e)
LAMINATE FLOORING		-					
	Laminate flooring / Novalis / LVT	3,284.7 ft ²	100%		8,270	8,270	0
RUBBER FLOORING							
	Rubber flooring / Resilient Floor Covering Institute / Includes tiles and rolls / 2mm [Industry Avg US & CA]	3,284.7 ft ²	100%		4,760	4,760	0
	Rubber flooring / ECOsurfaces / 6mm	3,284.7 ft ²	100%		1,800	1,800	0
HARDWOOD FLOORIN	G						
	Hardwood flooring / CRAFT Artisan Wood Floors / Engineered / 5/8", SFI Certified	2,627.8 ft ²	80%		3,760	3,760	0
	Hardwood flooring / mafi / Natural Hardwood Planks / 3/4", 3 ply laminated solid, oil pre-finished	3,284.7 ft ²	100%		4,268	4,268	0
	Hardwood flooring / Action Floor Systems / 3/4" / FSC certified	3,284.7 ft ²	100%		3,601	3,601	0
CERAMIC TILE FLOOR	ING						
	Ceramic tile / Crossville / Porcelain / Standard grade	3,284.7 ft ²	100%		7,293	7,293	0
	Ceramic tile / StonePeak / Porcelain / Porcelain, standard grade	3,284.7 ft ²	100%		4,950	4,950	0
	Ceramic tile / porcelain, pressed, mosaic and quarry / TCNA [Industry Avg US & CA]	656.9 ft²	20%		802	802	0
CARPET							
	Carpet / EC3 database / 150 sample conservative average [US & CA]	3,284.7 ft ²	100%		5,310	5,310	0
	Carpet / EC3 database / 150 sample average [US & CA]	3,284.7 ft ²	100%		4,059	4,059	0
	Carpet / Interface / CQUEST BioX / 1.5 mm Modular tile carpet	3,284.7 ft ²	100%		69	1,396	1,327
VINYL FLOORING							
	Vinyl flooring / Altro / Altro Lavencia Click /	3,284.7 ft ²	100%		4,333	4,333	0
	Vinyl flooring / Altro / Altro Lavencia Plus /	3,284.7 ft ²	100%		2,930	2,930	0

WINDOWS (FROM BEAM TOOL) * Based on total window area entered *

CATEGORY	MATERIAL	QUANTITY UN	ITS %	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO2e)
WINDOWS - DO	OUBLE-GLAZED						
DOUBLE-GLAZED W	/INDOWS – INDUSTRY AVERAGE						
	Window - double-glazed / Fiberglass frame / BfCA Study [US & CA]	384.8 ft ²	100%		4,076	4,076	0
	Window - double-glazed / Wood frame, aluminum cladding / BfCA Study [US & CA]	384.8 ft ²	100%		3,539	3,539	0
	Window - double-glazed / Vinyl frame / BfCA Study [US & CA]	384.8 ft ²	100%		3,075	3,075	0
	Window - double-glazed / Wood frame / BfCA Study [US & CA]	384.8 ft ²	100%		2,574	2,574	0
	Window - double-glazed / Wood frame / EU	384.8 ft ²	100%		2,141	2,141	0
	Window - double-glazed / Wood frame, aluminum cladding / EU	384.8 ft ²	100%		1,913	1,913	0
DOUBLE-GLAZED W	/INDOWS – PRODUCT-SPECIFIC						
	Window - double-glazed / Inline Fiberglass / Series 300, 325, 325, 400 / Fiberglass frame / CAN	384.8 ft ²	100%		2,706	2,706	0
	Window - double-glazed / Andersen / Fibrex / PVC & Wood composite / USA	384.8 ft ²	100%		2,470	2,470	0
WINDOWS - TR	RIPLE-GLAZED						
TRIPLE-GLAZED WI	NDOWS – INDUSTRY AVERAGE						
	Window - triple pane / Fiberglass frame / BfCA Study [US & CA]	384.8 ft ²	100%		4,540	4,540	0
	Window - triple pane / Wood frame, aluminum cladding / BfCA Study [US & CA]	384.8 ft ²	100%		4,004	4,004	0
	Window - triple pane / Vinyl frame / BfCA Study [US & CA]	384.8 ft ²	100%		3,539	3,539	0
	Window - triple pane / Wood frame / BfCA Study [US & CA]	384.8 ft ²	100%		3,039	3,039	0
	Window - triple pane / Wood frame, aluminum cladding / EU	384.8 ft ²	100%		2,644	2,644	0
	Window - triple pane / Wood frame / EU	384.8 ft ²	100%		2,263	2,263	0

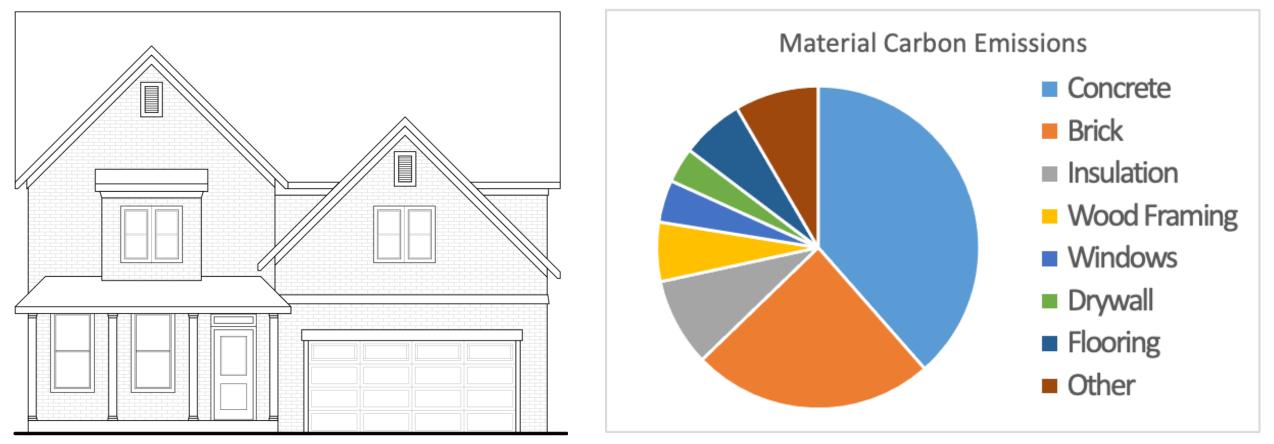
	CEILINGS				SUBTOT	AL (kg CO₂e)	c	BUILDERS FO
	•	SECTION COMPLETE!				431		ACTION
CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO ₂ e)
CEILING FINISHE	S							
DRYWALL - 1/2"								
	Drywall 1/2" / Pabco / QuietRock / QuietRock 1/2"	1.904.0	ft²	100%		859	859	0
(Drywall 1/2" [BEAM Avg US & CA]	1,904.0	ft²	100%		431	431	0
	Drywall 1/2" / CertainTeed / M2Tech moisture resistant / 1/2" (12.7 mm)	1,904.0	ft²	100%		331	331	0
	Drywall 1/2" / CertainTeed / Easi-Lite / 1/2" (12.7 mm)	1,904.0	ft²	100%		270	270	0
	Drywall 1/2" / CertainTeed / AirRenew / 1/2" (12.7 mm)	1,904.0	ft²	100%		263	263	0
DRYWALL - 1/2" TYPE	EC							
	Drywall 1/2" Type C / Georgia-Pacific / ToughRock Fireguard C /	1,904.0	ft²	100%		543	543	0
DRYWALL - 5/8" TYPE	EX							
	Drywall 5/8" Type X / Gypsum Association [Industry Avg US & CA]	1,904.0	ft²	100%		527	527	0
	Drywall 5/8" / USG / EcoSmart Firecode / 5/8"	1,904.0	ft²	100%		367	367	0
	ROOF				SUBTOT	AL (kg CO ₂ e)	c	BUILDERS FO
		SECTION COMPLETE!			4	,685		ACTION
CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO2e)
WOOD ROOF FRA	MING	FRAMING SPACING:		in				
WOOD TRUSS ROOF F								
	Wood roof truss / Gable Roof, Double Howe, 2x6 Chords, 2x4 Webs, 4:12 Pitch / OWEB [Industry Ava CA]	2,668.7	ft²	100%		1,028	1,028	0
WOOD I-JOIST ROOF	FRAMING							
	Wood I joist / TJI 230/360 / 16" Depth / AWC & CWC [Industry Avg US & CA]	2,668.7	ft²	100%		981	981	0

Results for EEBA Carbon House: 71.2 Tonnes

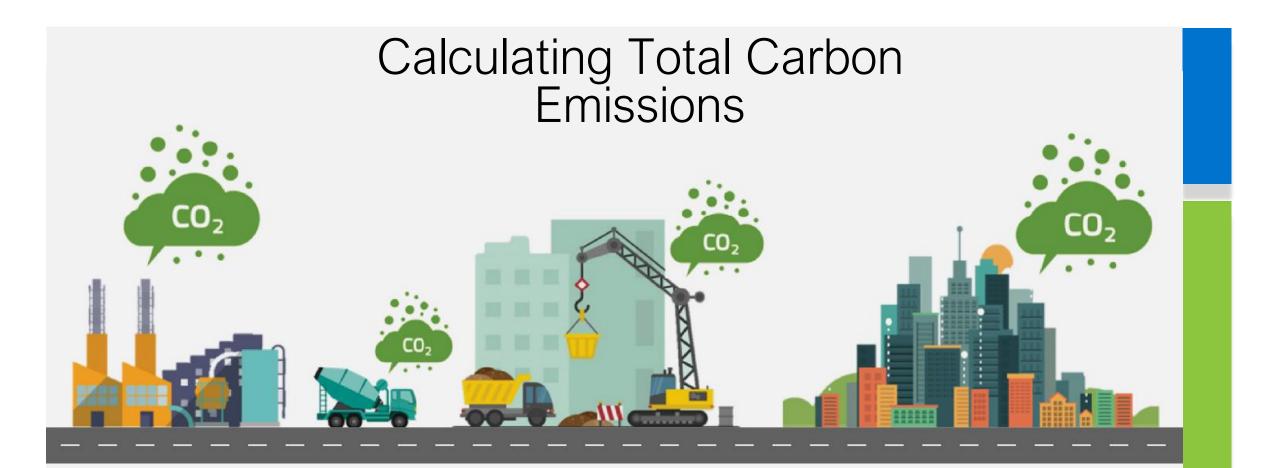
EEBA

Results: Summary by Section of the House

MATERIAL CARBON EMISSIONS BY SECTION


Footings & Slabs	19,310 kg CO ₂ e		
Foundation Walls	11,456 kg CO ₂ e		
Structural Elements	441 kg CO ₂ e		
Exterior Walls	2,170 kg CO ₂ e		
Party Walls	0 kg CO₂€		
Exterior Wall Cladding	17,262 kg CO ₂ e		
Windows	3,075 kg CO ₂ e		
Interior Walls	1,403 kg CO ₂ e		
Floors	7,451 kg CO ₂ e		
Ceilings	431 kg CO ₂ e		
Roof	4,685 kg CO ₂ e		
Garage	3,552 kg CO ₂ e		
NET TOTAL	71,235 kg CO ₂	e D MCE (kg CO ₂ e)	20,00

EBA


HIGHEST CARBON MATERIAL APPLICATIONS

SECTION	kg CO₂e	MATERIAL
Exterior Wall Cladding	16,567	Brick, Clay, Generic Modular / 3-5/8" x 2-3/4" x 7-5
Foundation Walls	11,282	Concrete – 0-25 MPa, Canadian Benchmark Avera
Footings & Slabs	9,767	Concrete – 0-25 MPa, Canadian Benchmark Avera
Footings & Slabs	4,892	Concrete – 0-25 MPa, Canadian Benchmark Avera
Floors	3,760	Hardwood flooring / CRAFT Artisan Wood Floors /
Windows	3,075	Window - double-glazed / Vinyl frame / BfCA Stud
Floors	1,625	Wood I joist / TJI 230/360 / 11-7/8" Depth / AWC &
Roof	1,528	Fiberglass loose fill / ~R2.6/inch [BEAM Avg]
Garage	1,288	Concrete – 0-25 MPa, Canadian Benchmark Avera

Embodied Carbon - EEBA Carbon House cz5 (Chicago)

71.2 Tonnes CO₂e

'Upfront' Embodied Carbon

Manufacturing, transportation, and installation of construction materials

Not sensitive to geographic location

Operational Carbon

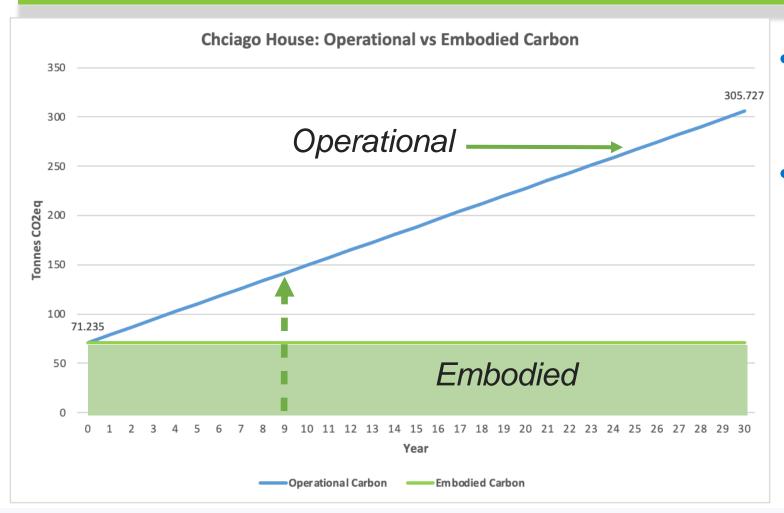
Building energy consumption

Very sensitive to geographic location

Total Carbon Emissions - over 30 years cz5 /Chicago

				.0 ₂	
	Embodied Carbon		Operational Carbon		Total Carbon
1st Year	71.235 Kg	+	7.82 Kg / yr	=	79.1 Tonnes
30 Years	71.2 tonnes What is a re	+ easo	234.6 Tonnes Sonable reduction tai	= rget?	305.8 Tonnes

Embodied Carbon Estimators Summary


Work with your designer or Energy Rater to choose a MATERIAL CARBON tool
 PROJECT RESULTS

CLIMATE BEAM

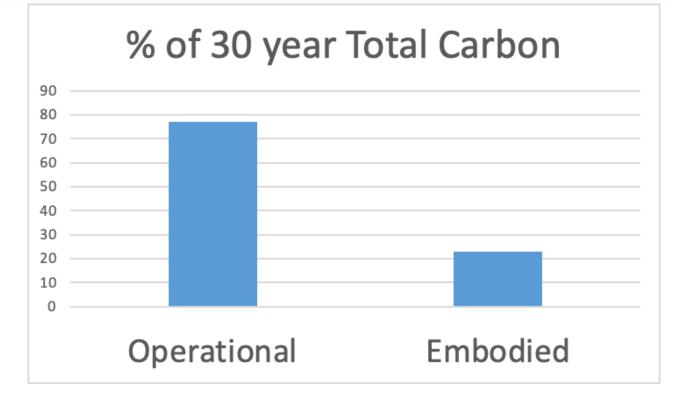
- Input at least one house to benchmark current practices
- Share results with your suppliers
- Model some changes to get a feel for the "sensitivity"
- Be accepting of changes and fine tuning of the software

PROJECT INFORMATION						
Project Name	EEBA Basement (Brick)	Construction Year				
Design Firm(s)		Number of Bedrooms	0			
Engineering Firm(s) Builder / Developer		Stories Above Grade	2			
Development Project		CONDITIONED AREA				
Street Address		Above Grade	3285 ft ²			
City		Below Grade	1467 ft ²			
Province / State		Total	4752 ft ²			
Country	United States					
		GROSS AREA				
Building Type	Single Detached House	Excluding Garage	4810 ft ²			
Construction Type	New Construction	Garage	390 ft ²			
Project Stage	Construction in Progress	Total	5200 ft ²			

The 30 Year Carbon Use Opportunity

• Reduce embodied carbon as much as practical NOW.

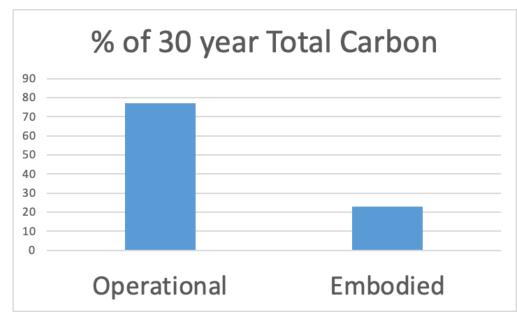
 Improve energy efficiency with the best possible "return" on any embodied carbon invested

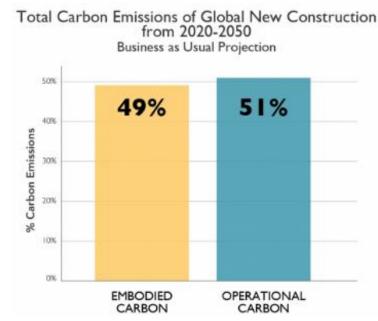


Carbon Reduction Targets

 If the Target is a 30% reduction by 2025

The EEBA Chicago House: 305 Tonnes over 30 years


= Reduction target 91Tonnes



Opportunities in both Operational and Embodied

Carbon Reduction Targets

 This ratio of embodied to operation carbon is specific to this house in this location

 This is the average ratio of embodied versus operational carbon globally

Reduction Strategies will vary in each location

Some Other Resources

Deeper Carbon Emissions: Continuing Discussions

ACTIONS FOR REDUCING EMBODIED CARBON AT YOUR FINGERTIPS

Carbon Smart Materials Palette By Architecture2030.org https://materialspalette.org/

RMI

Q News & Events

REPORT

Reducing Embodied Carbon in Buildings

Low-Cost, High-Value Opportunities

2021 | By Rebecca Esau, Matt Jungclaus, Victor Olgyay, Audrey Rempher

DOWNLOAD THE REPORT BELOW 🚣

Buildings account for at least 39 percent of energy-related global carbon emissions on an annual basis. At least one-guarter of these emissions result from embodied carbon, or the greenhouse gas (GHG) emissions associated with manufacturing, transportation, installation, maintenance, and disposal of building materials.

This report highlights low-cost and no-cost solutions for reducing embodied carbon in buildings during a project's design and construction phases. In case studies of three common building types, applying these solutions demonstrates an embodied carbon savings potential of 24 to 46 percent at cost premiums of less than 1 percent.

The report also explores how embodied carbon reductions can often:

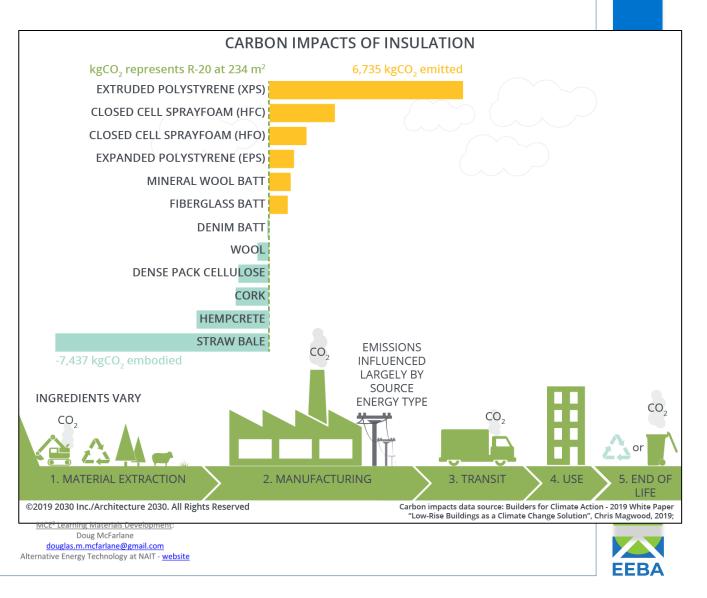
- reduce material use and project costs.
- · reduce energy consumption in raw material extraction, manufacturing, and transportation,
- help to meet green building certification requirements, and
- · better position building owners for future code or policy changes that incentivize or require low embodied carbon.

Reducing Embodied Carbon in Buildings: Low-Cost, High-Value Opportunities (RMI, 2021) - download free report

Slide and information provided by :

Canada

MCE² Learning Materials Development: Doug McFarlane douglas.m.mcfarlane@gmail.com Alternative Energy Technology at NAIT - website


Deeper Carbon Emissions: Continuing Discussions

Carbon Smart Materials Palette

By Architecture 2030.org

- <u>https://materialsp</u> <u>alette.org/insulati</u> <u>on/</u>
- Example: Slide and information provided by : Canada insulation

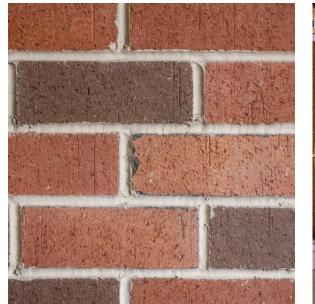
Design and Material Selection Opportunities to Optimize Carbon Reductions

What's the decision tree?

- The functionality of the product to ensure it meets all design and construction specification requirements
- The magnitude of emissions from specific materials
- The impact on design and aesthetics of the house for market acceptance
- The cost implications
- The impact on warranty/service issues
- The impact on process/cycle times
- Supplier availability

These criteria are similar to the decisions you make every day in the complex world of new home construction

Embodied Carbon Impact of Material Changes

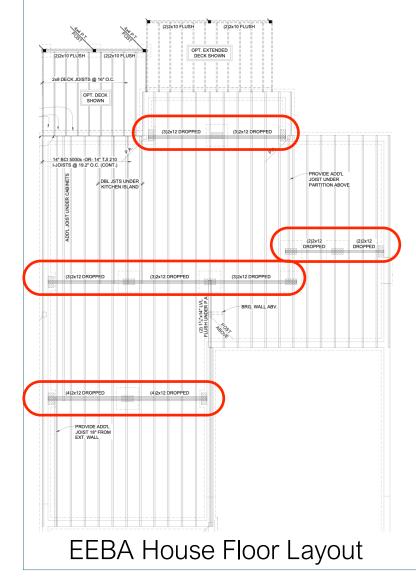

3 Top Contributors

Concrete

Cladding - brick

Insulation

Low Embodied Carbon Materials



- Wood and wood based products store or sequester carbon
- Wood is 50% carbon by weight

					NET EMISSIONS	EMISSIONS	STORAGE
EGORY	MATERIAL	QUANTITY UNIT	S %	SELECT	(kg CO ₂ e)	(kg CO ₂ e)	(kg CO ₂ e)
SE INSULA	ITION						
	Cellulose / loose fill / R 3.7/inch / CIMA [Industry Avg US & CA]	2,699.7 ft ²	100%		-986	452	1,437
	Cellulose / batt / CMS / EcoCell / R 3.6/inch	2,699.7 ft ²	100%		-1,654	452	2,106
	Cellulose / spray applied / R 3.75/inch / International Cellulose Corp. / K-13, ThermoCon	2,699.7 ft ²	100%		-1,949	301	2,251
	Cellulose / dense pack / R 3.7/inch / CIMA [Industry Avg US & CA]	2,699.7 ft ²	100%		-1,971	904	2,875

• Cellulose based products, such as insulation have negative emissions - they store carbon for the life of the building

Structural Carbon Optimization Example

EEBA House Floor Beam DesignSteelLVLLumberKg CO2e65220263.9

Courtesy of: https://www.gestimat.ca/projets/1229

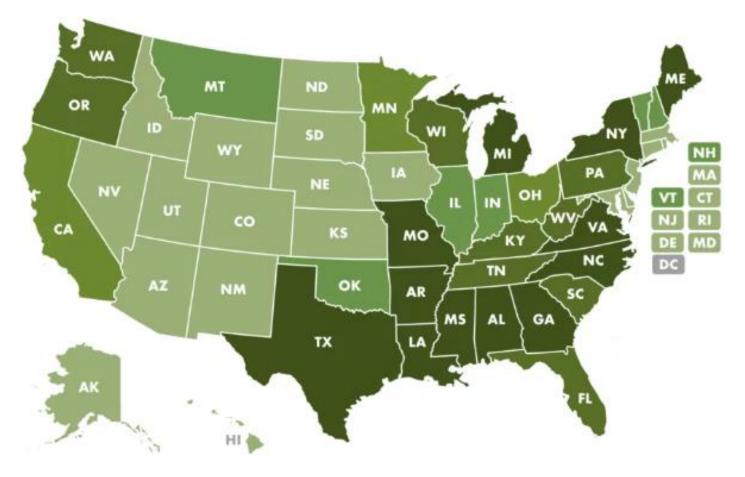
Replacing steel beams for the second floor with engineered or dimensional lumber

What other advantages and decision criteria are there?

Wood Use In Construction

Maximizing wood use in both residential and commercial construction could remove an estimated 21 million tons of CO2 from the atmosphere annually—equal to taking **4.4 million cars** off the road.

Think Wood: Stewards of the Land, Faces of the Forest


https://www.thinkwood.com/blog/faces-of-the-forest

NATIONAL

PRIVATE WORKING FORESTS SUPPORT:

- JOBS: 2,465,644
- S PAYROLL: \$108,032,512,279
- ALES & MANUFACTURING: \$284,717,239,692

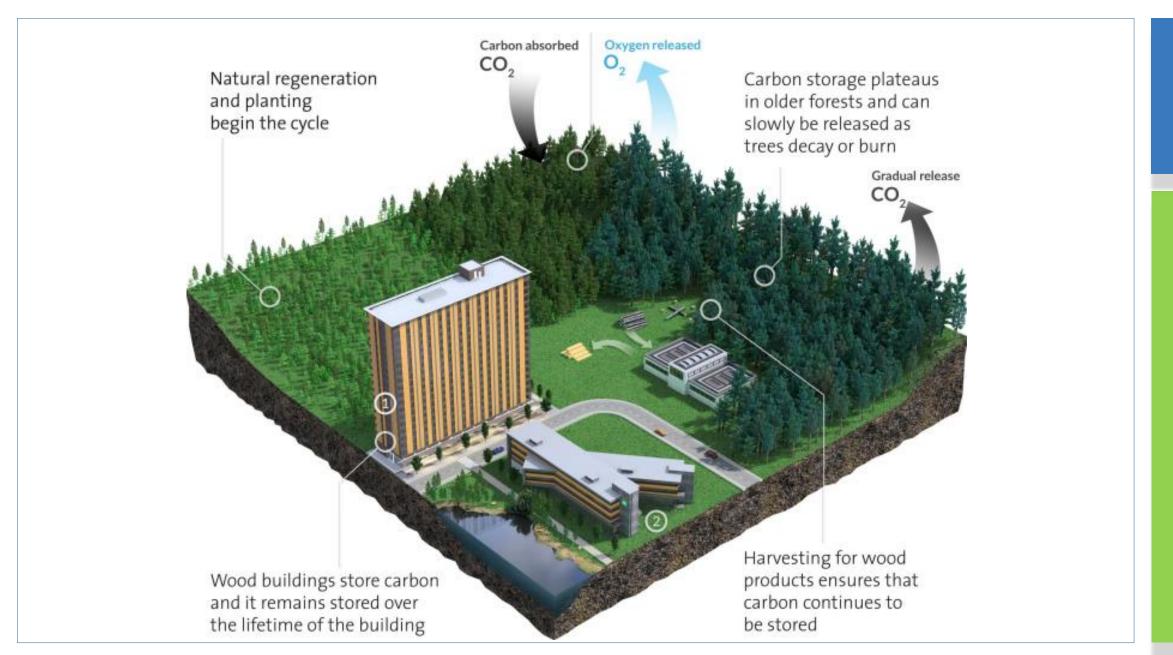
Privately Owned Timberland Acres in Millions, by State

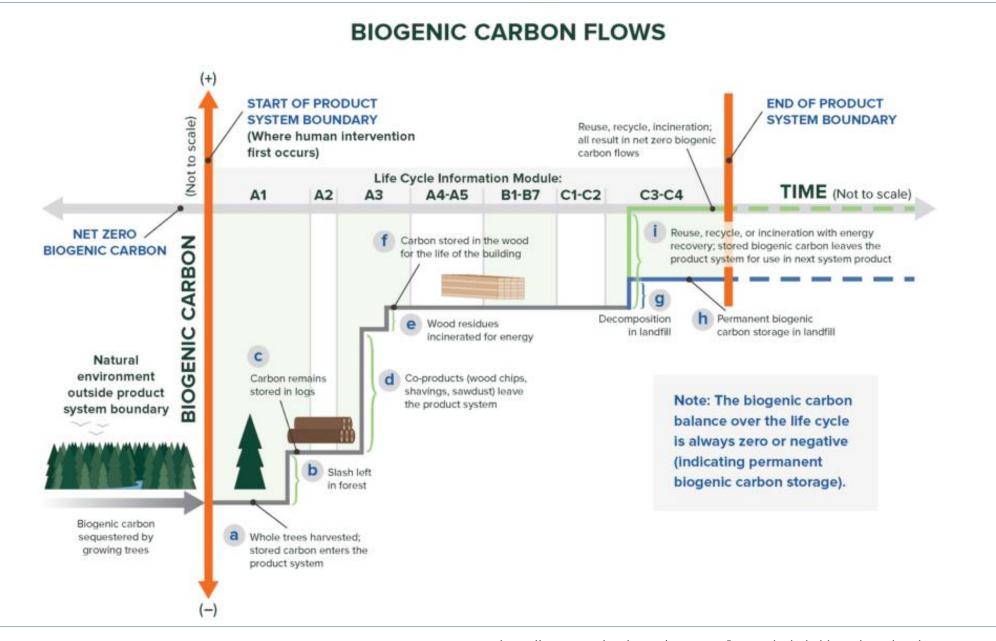
Think Wood: Wood and Wood-Based is Good

Responsible forest management

- Grow
- Harvest
- Replant

Creates a reliable, sustainable source of building materials that sequester and store carbon


"It's more sustainable to harvest trees once they reach a certain age, then immediately replant so we can keep this cycle continuing on for generations to come."


Biogenic Carbon in Wood

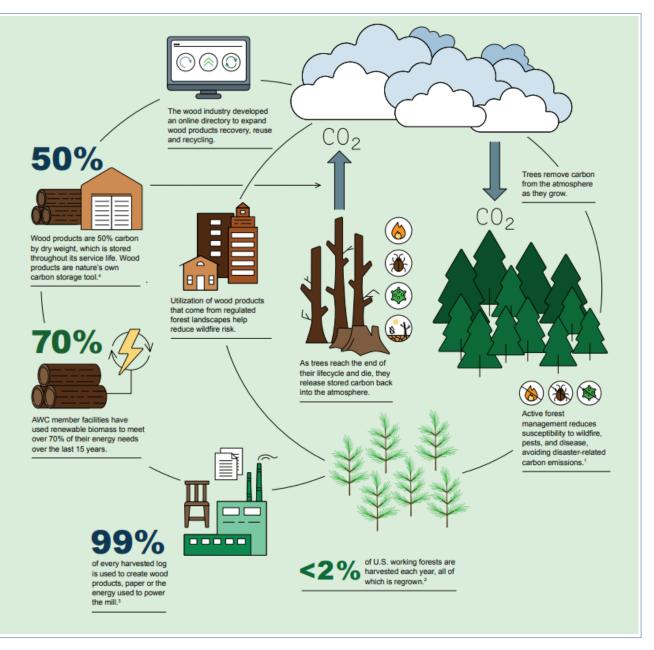
Biogenic carbon in wood products refers to carbon sequestered by a tree during its growth that continues to be stored in wood products over their lifetime.

https://www.woodworks.org/resources/woodworks-carbon-calculator/

https://www.woodworks.org/resources/how-to-include-biogenic-carbon-in-anlca/#:~:text=Biogenic%20carbon%20in%20wood%20products,wood%20products%20over%20their%20lifetime.

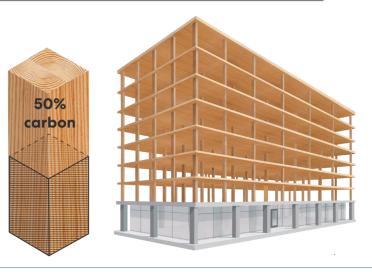
Low Embodied Carbon

Wood products are less energy intensive to manufacture than steel or concrete


Most of the energy used to manufacture wood products comes from renewable biomass instead of fossil fuels

Wood Buildings Store Carbon

Trees absorb CO2 from the atmosphere as they grow.


They continue to store the carbon when they are manufactured into products

Wood is 50% carbon by dry weight carbon

Carbon Storage in Different Wood Products

Species	Density of Wood at 15% MC (lb/ft³)	Dry Density of Wood (lb/ft ³)	Estimated Carbon Stored (lb/ft³)	Estimated CO ₂ Equivalent (lb/ft ³)
Douglas fir-larch	34.5	30.0	15.0	55.0
Hem-fir	30.7	26.7	13.3	48.9
Spruce pine fir	27.8	24.2	12.1	44.3
Southern yellow pine	36.3	31.6	15.8	57.9

https://www.woodworks.org/resources/calculating-the-carbon-stored-in-wood-products/

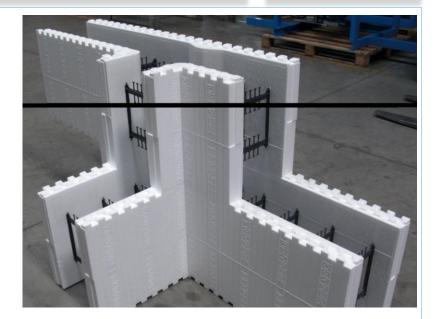
Cladding Choices - EEBA Carbon House

Total Material Carbon Emissions (Tonnes CO2e)

Brick	71.2	Base Case
Stucco	65.9	
Cement Board Siding	62.7	
Vinyl siding	55.8	
Wood siding	54.1	Best Case

What other decision criteria are there?

A 24% overall reduction by changing to a wood -based cladding in the BEAM tool

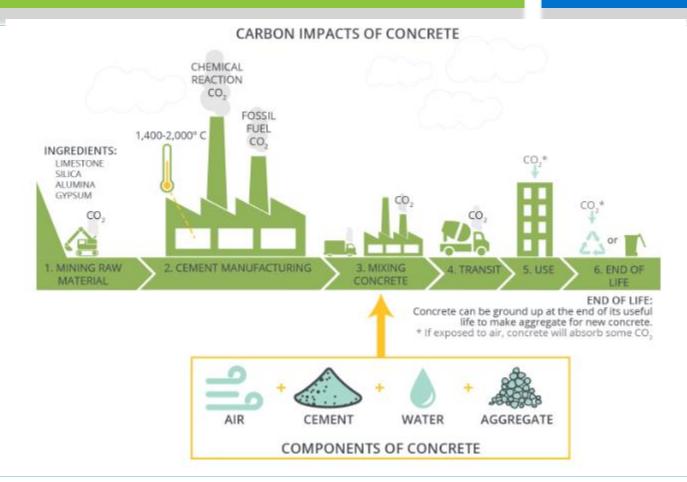

4 different claddings on one house

Alternative Wall Structure Choices

Total Material Carbon Emissions (Tonnes CO2e)

- ICF Basement (R23) only 71.6
- ICF Exterior AG Walls Only (R23) 87.4
- ICF Basement & Ext. AG Walls (R23) 87.9
- SIP Exterior AG Walls (R23)
- 2x6 Framed Ext Walls (R21)

71.2 Base Case



Evaluate energy efficiency, durability and resiliency of different wall systems in addition to the carbon emission factors

74.3

CONCRETE – CEMENT OPTIONS

SCM Supplemental Cementitious Materials (ad-mixture)

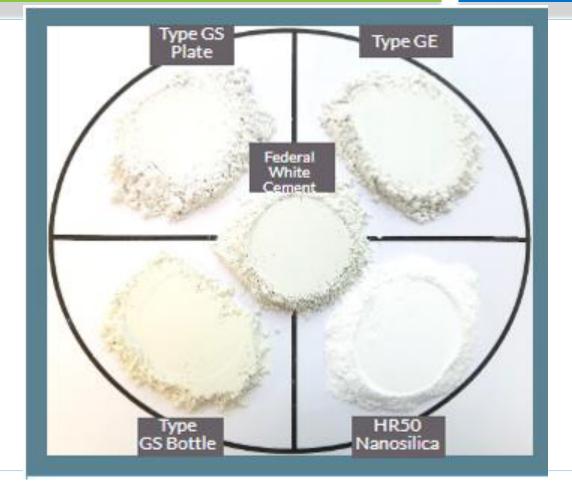
Fossil based-by-products as SCM

Silica Fume

Fly Ash

Blast Furnace Slag etc

When possible use non-fossil fuel-based SCMs or cement replacements – Known as **Pozzolans**


Pozzolans are a broad class of siliceous or siliceous and aluminous materials which, in themselves, possess little or no cementitious value but which will, in finely divided form and in the presence of water, react chemically with calcium hydroxide at ordinary temperature to form

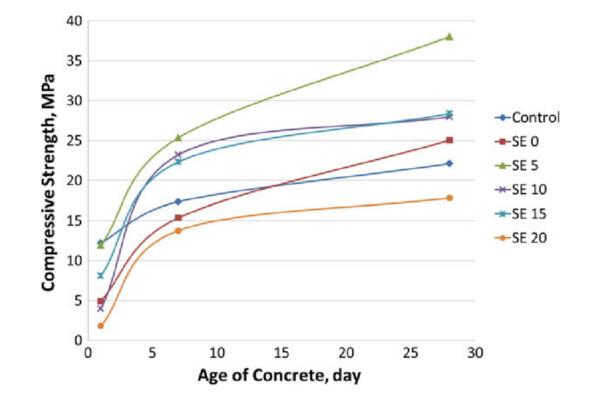
compounds possessing cementitious properties.

Glass Pozzolan*

Glass Pozzolan is recycled, post-consumer glass that is ground up and used as an
SCM, reducing the amount of cement in a concrete mix.
Glass pozzolan has been shown to contribute to effective, consistent strength gain and workability.
ASTM 1866

Rice Husk Ash Concrete

- Rice husks (the hard protective coverings of rice grains) are agricultural byproducts


(waste material from rice mill processes), and are made up of approximately 85-90% amorphous silica plus about 5% alumina, making the ash highly pozzolanic*6.

CONCRETE – CEMENT OPTIONS WITH SCM

Substitute cement with supplementary cementitious materials (SCMs) from non-fossil fuel based sources

- Consider use of larger sized aggregate (e.g. 1" vs ³/₄" coarse aggregate) where appropriate.
- Typical practice is to define a minimum amount of cement required and/or a maximum allowable amount of SCMs, both of which can result in the inclusion of more cement than necessary.
 Instead, specify the required compressive strength at a specific age.

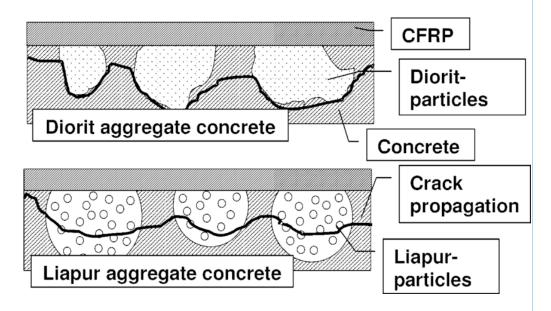
CONCRETE – CEMENT OPTIONS WITH SCM

Get to know what options are available to suppliers local to the project

- Not all the options below are available to all concrete suppliers, as materials in concrete vary significantly depending on local supplies.
- SCM admixtures can make low-cement concrete that would normally be unworkable much easier to handle and finish in the field but require well-trained teams at the batch plant and the construction site.
- SCM may require seasonal adjustment. E.g. 0-10% in winter and 30%+ in summer. Cold weather application with SCM may limit high-heat hydration/curing therefore requiring forms to remaining place longer

CONCRETE – CEMENT OPTIONS – Increase Lime Use

Specify Portland Limestone Cement (PLC) instead of Portland cement

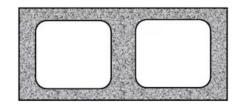

PLC, or type IL cement, is a slightly modified version of Portland cement that can result inreduced embodied carbon by using higher percentages of limestone (5-15% in PLC, compared to the 5% typically used in Portland cement)5. This results in a smaller portion of cement in the mix. Where locally available, specify PLC over typical Portland cement.

CONCRETE – **CEMENT OPTIONS** - Aggregate

Specify hard, clean, and strong aggregates

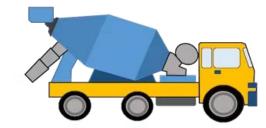
Weak and/or lightweight aggregates often require the addition of more cement to achieve the necessary mix strength. Soft, porous aggregates can also result in weak concrete with low wear resistance, reducing the life-span of the material. Whenever possible and locally available, use strong aggregates to reduce the required cement quantity and create concrete with a high resistance to abrasion and a longer life-span.

CONCRETE – CEMENT OPTIONS


Utilize carbon sequestration (CO2 injection)

New technology captures the carbon naturally emitted during the cement manufacturing process and injects it back into the concrete mix during mixing. Encourage concrete suppliers to use carbon sequestration/CO2 injection methods.

How much CO₂ can concrete store?


Carbon dioxide uptake refers to the total amount of CO_2 that a concrete mix can sequester through carbonation. The percentages, based on laboratory testing at the University of Michigan, describe how much of the concrete's total mass can be made up of CO_2 .

Precast ~30% of concrete

9.6% CO₂ uptake

3.8% CO2 uptake

<u>1.4+ Billion</u> Tonne/Year

CO₂ Sequestration Potential with Bendable Concrete

CONCRETE – CEMENT OPTIONS

Consider 56 or later day strength on parts of the project

Strength conformity at 56, 90, 120, or more days, rather than the conventional 28, **could enable an increase in the amount of SCMs replacing cement.** Specify design compressive strengths greater than 28 days whenever possible to allow the maximum use of SCMs..

Embodied Carbon Impact of Energy Efficiency Changes

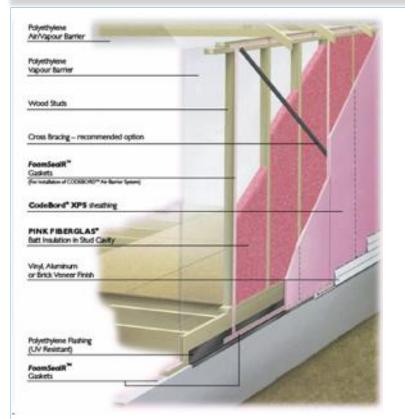
Window Choices - EEBA Carbon House

High Performance Low-E Glass	Glazing	MMBTUs/yr	Operational CO ₂ e Tonnes/yr	Embodied CO2e Tonnes
Clear Glass Argon or Krypton Gas Filled	Double, Low E, Argon	108.1	7.82	71.2
Low Conductivity Spacers	Triple, 2 Coats Low E, Argon	103.9	7.55	71.7
	Change		- 0.27 Tonnes/yr	+0.5 Tonnes

A 2 year "return" on carbon investment

What other advantages do triple glazed windows offer?

Air Tightness - EEBA Carbon House



Tightness ACH50	MMBTUs/yr	Operational CO2e Tonnes/yr	Embodied CO2e Tonnes
3.0	108.1	7.82	71.2
2.0	103.2	7.56	Neglible
1.5	100.9	7.44	Neglible
Change		-0.38 Tonnes/yr	Neglible

Less than one year "return" on carbon investment

What other advantages does airtightness offer?

Exterior Insulation Choices - EEBA Carbon House

Insulated Sheathing	MMBTUs/yr	Operational CO2e Tonnes/yr	Embodied CO ₂ e Tonnes
0110001110			_
None	108.1	7.82	71.2
R5	103.5	7.57	72.4
R10	100.5	7.41	73.6
Change		-0.41 Tonnes /yr	+2.4 Tonnes

A 6 year "return" on carbon investment

CONTINUOUS INSULATION (R5)

CATEGORY	MATERIAL	QUANTITY L	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO₂e)
CONTINUOUS	INSULATION	R-VALUE	5.0					
XPS FOAM BOARD	(LEGACY FORMULAS)							
	XPS foam board / DuPont / Styrofoam / HFC-filled / R 5.6/inch	2,699.7 f	t²	100%		13,428	13,428	0
	XPS foam board / Owens Corning / Foamular 250 / HFC-filled / R 5.0/inch	2,699.7 f	t²	100%		11,154	11,154	0
XPS FOAM BOARD	(REDUCED GWP)							
	XPS foam board / DuPont / Styrofoam / Reduced GWP / R 5.6/inch	2,699.7 f	t²	100%		8,061	8,061	0
SPRAY POLYURETH	IANE FOAM – HIGH DENSITY							
	Spray polyurethane foam - High Density (HFC gas) / R 6.3/inch / SPFA [Industry Avg US & CA]	2,699.7 f	t²	100%		3,759	3,759	0
	Spray polyurethane foam - High Density (HFO gas) / R 6.5/inch / SPFA [Industry Avg US & CA]	2,699.7 f	t²	100%		1,093	1,093	0
SPRAY POLYURETH	IANE FOAM – CLOSED CELL							
	Spray polyurethane foam - Closed Cell (HFC gas) / R 6.6/inch / SPFA [Industry Avg US & CA]	2,699.7 f	t²	100%		2,907	2,907	0
	Spray polyurethane foam - Closed Cell (HFO gas) / R 6.6/inch / SPFA [Industry Avg US & CA]	2,699.7 f	ťt²	100%		919	919	0
	Spray polyurethane foam - Closed Cell (HFO gas) / Huntsman / Heatlok Soya HFO & Heatlok HFO / R 6.5/inch	2,699.7 f	ťt²	100%		553	553	0
XPS FOAM BOARD								
	XPS foam board / Owens Corning / Foamular NGX 250 / R 5.0/inch	2,699.7 f	t²	100%		1,793	1,793	0
	XPS foam board / R 5.0/inch [BEAM Avg US & CA]	2,699.7 f	t²	100%		1,083	1,083	0
	XPS foam board / DuPont / Styrofoam ST-100 / R 5.0/inch	2,699.7 f	t²	100%		1,031	1,031	0
	XPS foam board / SOPREMA / SOPRA-XPS / R 5.0/inch	2,699.7 f	t²	100%		425	425	0
MINERAL WOOL BO	DARD							
	Mineral wool board - heavy density / NAIMA / R 4.2/inch [Industry Avg N.America]	2,699.7 f	ft²	100%		1,802	1,802	0
	Mineral wool board / Rockwool / Comfortboard 80 / R 4.2/inch	2,699.7 f	ft²	100%		897	897	0
	Mineral wool board - light density / NAIMA / R 3.7/inch [Industry Avg N.America]	2,699.7 f	ft²	100%		735	735	0
	Mineral wool board / Rockwool / Rockboard 60 / R 4.3/inch	2,699.7 f	ft²	100%		573	573	0
HIGH R-VALUE COI	NTINUOUS INSULATION	,						
	Vacuum Insulated Panel / Porextherm / Vacupor / R 30/inch	2,699.7 f	ft²	100%		1,640	1,640	0

CONTINUOUS INSULATION (R5) Cont'd

CATEGORY	MATERIAL	QUANTITY	UNITS	%	SELECT	NET EMISSIONS (kg CO2e)	EMISSIONS (kg CO2e)	STORAGE (kg CO2e)
EPS FOAM BOARD								
	EPS foam board / R 4.3/inch, Type XV, 60 psi (400 kPa) / EPS Industry Alliance [Industry Avg US & CA]	2,699.7	ft²	100%		1,718	1,718	0
	EPS foam board / R 4.0/inch avg [BEAM Avg US & CA]	2,699.7	ft²	100%		1,055	1,055	0
	EPS foam board / R 4.2/inch, Type IX, 25 psi (170 kPa) / EPS Industry Alliance [Industry Avg US & CA]	2,699.7	ft²	100%		1,054	1,054	0
	EPS foam board / R 4.0/inch, Type II, 15 psi (100 kPa) / EPS Industry Alliance [Industry Avg US & CA]	2,699.7	ft²	100%		833	833	0
	EPS foam board / R 3.6/inch, Type I, 10 psi (70 kPa) / EPS Industry Alliance [Industry Avg US & CA]	2,699.7	ft²	100%		616	616	0
EPS FOAM BOARD W	/ITH GRAPHITE							
	EPS foam board with graphite / BASF / Neopor / R 4.7/inch, Type IX	2,699.7	ft²	100%		755	755	0
	EPS foam board with graphite / BASF / Neopor / R 4.7/inch, Type II, 15 psi (Type 2, 110 kPa)	2,699.7	ft²	100%		610	610	0
POLYISOCYANURATE	FOAM BOARD							
	Polyisocyanurate / Wall Boards / R 6.5/inch / PIMA [Industry Avg US & CA]	2,699.7	ft²	100%		905	905	0
	Polyisocyanurate / Wall Boards / DuPont / Thermax / R 6.5/inch	2,699.7	ft²	100%		528	528	0
	Polyisocyanurate / Wall Boards / Hunter / Xci / R 6.5/inch	2,699.7	ft²	100%		501	501	0
CORK BOARD								
	Cork board insulation / Amorim / Isolamentos / R4/inch	2,699.7	ft²	100%		-1,509	657	2,166
WOOD FIBER BOARD								
	Wood fiber board / GUTEX / Multi-Therm / R 3.6/inch, 40, 60, 80, 100, 120, 140, 160, 180, 200 mm	2,699.7	ft²	100%		-958	970	1,929
	Wood fiber board / Steico / Special Dry / R 3.6/inch, 40, 120, 140, 160, 180, 200 mm	2,699.7	ft²	100%		-1,520	419	1,939
	Wood fiber board / Pavatex / Pavatherm / R 3.4/inch	2,699.7	ft ²	100%		-1,826	921	2,748
	Wood fiber board / R 2.7/inch / NAFA [Industry Avg US & CA]	2,699.7	ft²	100%		-2,279	2,349	4,627

Exterior Insulation Choices - EEBA Carbon House

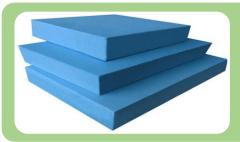
Continuous Insulation Material Carbon Emissions	
Insulation Type	Net Emissions (kg CO2e)
EPS Foam Board	1718
Mineral Wool Board	897
XPS Foam Board	1031
Legacy XPS Foam Board	13428
Wood Fiber Board	-958

There is significant differences in the embodied carbon of exterior insulation Some can ever store carbon - what decision criteria will you consider?

Cavity Insulation Choices - EEBA Carbon House

Cavity Insulation Materia	l Carbon Emissions
Insulation Type	Net Emissions (kg CO2e)
High Density Spray Foam (HFO)	4592
Closed Cell Spray Foam (HFO)	3859
Open Cell Spray Foam	1317
Mineral Wool Batt	1580
Fiberglass Batt	430
Cellulose	-936

Some can even store carbon


There is significant differences in the embodied carbon of Cavity Insulation

Carbon Smart Attributes

Concrete

- Less Cement = Less Carbon
- Consider different concrete mixes (Fly Ash/Slag)

Insulate

- Insulate with biogenic materials that naturally sequester carbon
- Consider blown-in instead of rigid and spray foams

Reduce, Reuse, Recycle

- Specify reclaimed & salvaged products
- Design for longevity, repair, and maintenance

Reducing the Carbon Impact of Concrete

- Use less concrete
 - Smaller homes, no basement, optimize footing & wall thickness
- Switch to alternative structural components wood is good
- Use Supplementary Cementitious Materials (SCMs) Fly ash
 - 80% of concrete's carbon impact comes from the production of cement
- Use local materials and suppliers that are using low carbon fuels
- New carbon dioxide injection technologies are being researched

https://civilengineersforum.com/fly-ash-in-concreteadvantages-disadvantages/

PCA member companies are committed to achieving carbon neutrality across the cement and concrete value chain by 2050.

OPTIMIZING THE DESIGN

AND CONSTRUCTION OF

AT THE CEMENT PLANT

Increase the use of decarbonated raw materials

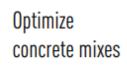
Decrease the use of traditional fossil fuels by 5X

emissions to zero at the plant

Increase the use of alternative fuels

Push efficiency and decrease energy intensity for one metric ton of clinker

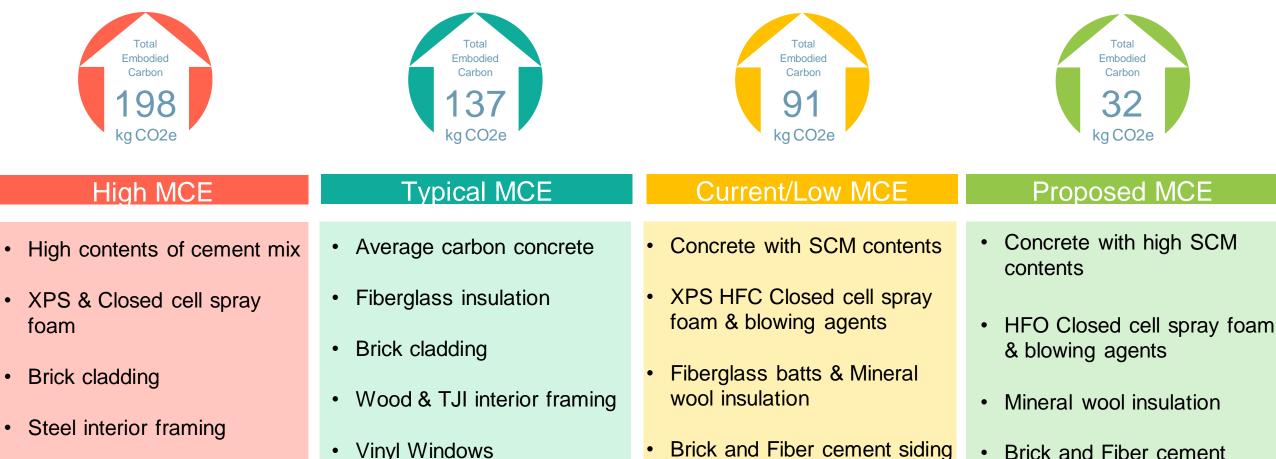
Utilize carbon capture to avoid the release of CO₂ emissions


Ψ

Reduce clinker production emissions

Lower concrete manufacturing

Transition to zero emission fleets


Reduce overdesign

PRODUCTION: AT THE CEMENT PLANT

Replace raw materials with decarbonated materials	Using decarbonated materials eliminates CO2 emissions from processing traditional raw materials, like limestone.
Use alternative fuels	Replacing traditional fossil fuels with biomass and waste-derived fuels lowers greenhouse gas (GHG) emissions and keeps materials out of landfills.
Continue efficiency improvements	Increasing energy efficiency reduces the amount of CO ₂ emitted for each ton of product.
Implement carbon capture, utilization, and storage (CCUS) technology	CCUS directly avoids a significant portion of cement manufacturing emissions.
Promote new cement mixes	Creating new cements using existing and even alternative materials reduces emissions from mining for new materials, while optimizing the amount of clinker used ensures emissions correspond to necessary production.
Increase use of portland-limestone cement (PLC)	As an existing lower-carbon blend, universal acceptance of PLC will reduce clinker consumption and decrease emissions.
CONSTRU	ICTION: DESIGNING AND BUILDING
Optimize concrete mixes	Considering the specific needs of the construction project and using only the materials necessary, avoiding excess emissions.
Use renewable fuels	Switching to solar, wind and other renewable sources of energy directly reduces emissions from other energy sources.
Increase the use of recycled materials	Diverting these materials from landfills.
Avoid overdesign and leverage construction technologies	Designing for the specific needs of the construction project reduces unnecessary overproduction and emissions; incorporating just-in-time deliveries.
Educate design and construction community	Improve design and specifications to be more performance oriented which will permit innovation in cement and concrete manufacturing. Encourage the use of advanced technologies to improve structural performance, energy efficiency, resiliency, and carbon sequestration.
EVERYDAY:	CONCRETE INFRASTRUCTURE IN USE
Incentivize energy efficient buildings	Increasing buildings' energy efficiency can cut energy use and resulting emissions from heating and cooling.
Reduce vehicle emissions by improving fuel efficiency	Because of its rigidity, concrete pavements enhance the fuel efficiency of vehicles driving over them, reducing vehicle emissions.
Decreased maintenance	Due to their durability, concrete structures (buildings, pavements, bridges, dams, etc.) last longer and require less frequent maintenance.
Recycling	Concrete in place can be 100% recycled, limiting the use of raw materials and production emissions.
Carbonation	Every exposed concrete surface absorbs CO2 and over the course of its service life, a building can reabsorb 10% of cement and concrete production emissions.

Materials Matter

The same building can have very different Material Carbon Emissions (MCE)

Wood interior framing

- Vinyl windows
- Tile & Carpet flooring
- Clay tile roofing

Asphalt shingle roofing •

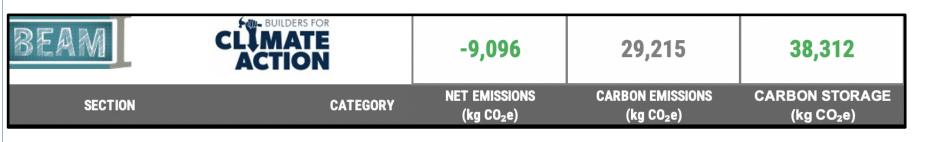
& Vinyl flooring

Engineered Wood

Vinyl Windows

•

٠


- Brick and Fiber cement cladding
- Wood interior framing ٠

Chicago Base House

Low or Negative Carbon Upgrades:

- Concrete with 35% SCMs for footings, slabs
- Treated wood foundation or Hempcrete
- Wood frame walls with straw bale insulation
- Straw attic insulation
- Wood-frame floor structure
- Wood wool interior wall finish
- All electric heat & DHW
- A "clean" fuel source solar

The Challenges....

Low Carbon /Carbon Materials: The Building Science Challenges

Carbon Reduction is complex building science undertaking

Material Options: Regional Options Do Exist.

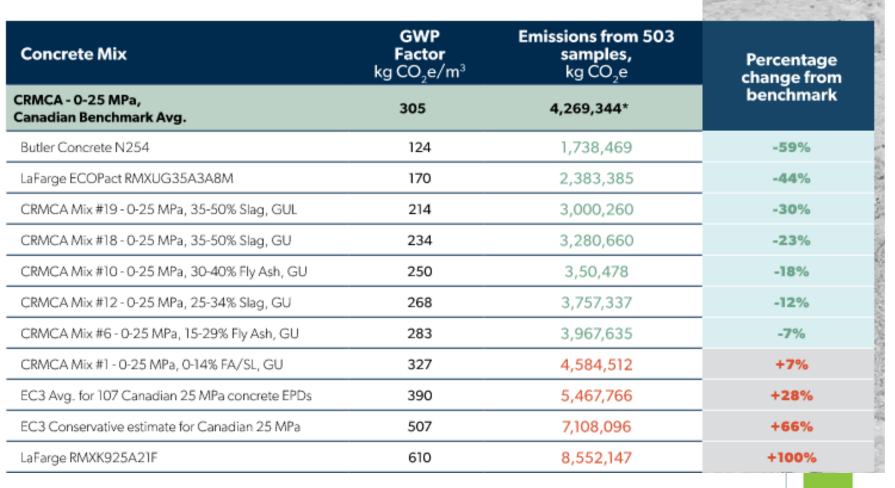
Table 7. Comparison of possible GWP factors for 25 MPa concrete in Canada *Total GWP for concrete only, does not include rebar or mesh

SCM Supplemental Cementitious Substitute

Slag

Fly Ash

• Lime?


• Other....

Can impact

 Cold weather application

Limit "heat development " and set-time

https://www.buildersforclimateaction.org/reportembarc-repor	t html
The structure of the state of t	

Material Options: Regional Options Do Exist.

Insulation Emissions Comparison for 100 m² @ R5

Insulation Options

- New formulas are already changing the mix
- Reference the products actual EPD vs industry averages
- EPD need to be frequently UPDATED

XPS Foam Board R 5/inch 4937 Aerogel Batt R 9.6/inch 1652 Closed Cell Spray Foam (HFC) R 6.6/inch 1159 NGX Foam Board R 5/inch 715 Vacuum Insulated Panel R 30/inch 654 Mineral Wool Board R 4.2/inch Closed Cell Spray Foam (HFO) R 6.6/inch 366 EPS Foam Board (Type II) R 4/inch Polyisocyanurate Foam Board R 6.5/inch 252 Open Cell Spray Foam R 4.1/inch **146** 115 Mineral Wool Batt R 4/inch 114 Wool Batt R 4/inch Fiberglass Blown In R 2.6/inch Fiberglass Batt R 3.6/inch 59 Hemp Fiber Batt R 3.7/inch -70 -202 Cellulose R 3.7/inch Each result is an Wood Fiber Batt R 3.9/inch -218 AVERAGE of a range Hempcrete R 2.1/inch -554 and products can vary Wood Fiber Board R 3.4/inch -663 by as much as 50% -753 Straw Bale R 2.8/inch kg CO,e -2000 0 2000 4000 6000

Figure 11. Range of net emissions for different insulation types from BEAM software.

https://www.buildersforclimateaction.org/report---embarc-report.html

Carbon Reduction is complex building science undertaking

Natural, carbon storing, construction materials

Wonderful opportunity to invest in future , today.

• This said, we better get some things right because....

□ Water /moisture interaction?

□ Porous materials or Hygrophobic?

Durability under variable moisture RH conditions and temperatures?

IF WE DO-

-Better be water management experts(better than we do today...)
-Better be air tight masters (interstitial condensation)
- ...Better be more careful at controlling dew points and hygrothermal performance of enclosure
- ...Better start controlling interior relative humidity(summer and winter) better than we do now

Carbon Reduction is complex building science undertaking

EC and HVAC : What about the systems ?

EC = Materials. 2020 Swiss studies suggest

15% to 36% of total building EC

ODP Ozone Depletion Potential / GWP

Global Warming Potential = "refrigerants"

- LOW to ZERO ODP are here....(R410A)
- LOW GWP -CO2 based systems are coming
- We need to know more...

Climate change impact for the assessed HVAC categories

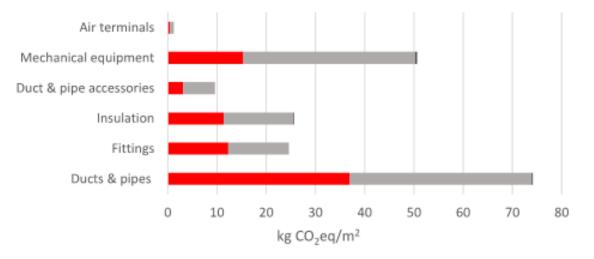


Figure 4. Climate change impact results for the assessed HVAC categories in kgCO2eq/m².

Detailed Assessment of Embodied Carbon of HVAC Systems for a New Oce Building Based on BIM Christina Kiamili 1, Alexander Hollberg 2 and Guillaume Habert 1,* 1 Chair of Sustainable Construction, Institute of Construction and Infrastructure Management, Swiss Federal Institute of Technology (ETH), Stefano Franscini Platz 5, 8093 Zurich, Switzerland;
ckiamil@student.ethz.ch
2 Research Group Sustainable Building, Division of Building Technology,
Department of Architecture and Civil Engineering, Chalmers University of Technology,
41296 Gothenburg, Sweden; alexander.hollberg@chalmers.se
* Correspondence: habert@ibi.baug.ethz.ch
Received: 2 March 2020; Accepted: 16 April 2020; Published: 21 April 2020

Carbon Reduction is complex building science undertaking EC and EXISTING HOMES

Potential for positive impact with existing housing could equal OR exceed impact potential on new housing

Reusing empty homes could make an initial saving of 35 tonnes of carbon dioxide (CO2) per property by removing the need for the energy locked into new build materials and construction.

UK study found that the construction of a **new house generated** 50 tonnes of CO2, but the renovation of an existing house emitted only 15 tonnes

Carbon Reduction is complex building science undertaking Renewables and Carbon

For multicrystalline-silicon systems (i.e. solar panels), it currently takes 4 years

to achieve EPBT(energy pay back total) according to the U.S. Department of Energy. Since solar panels last for 20 to 30+ years, a single solar panel can

generate more than four or five times the energy used to produce.

China – where a growing portion of solar panels are made – has set

regulations for manufacturers to recycle at least 98.5% of silicon tetrachloride

waste. Moreover, scientists at the National Renewable Energy Laboratory, a

division of the U.S. Department of Energy, are experimenting with **alternative**

production methods

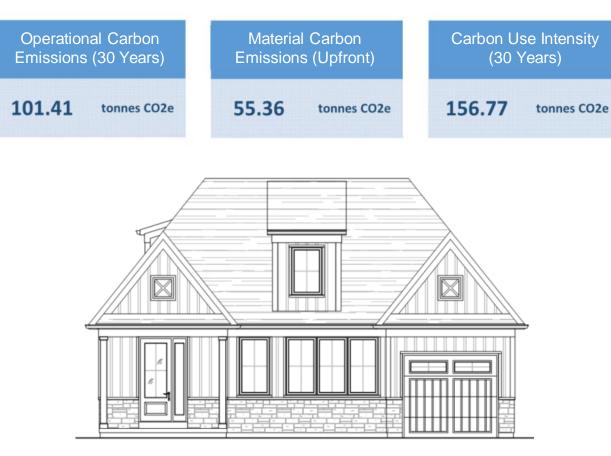
We still need to understand this better....

CASE STUDY

Applying BEAM

A Case Study

Carbon Emissions

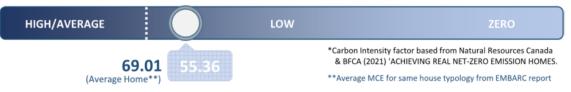

BEAM Tool

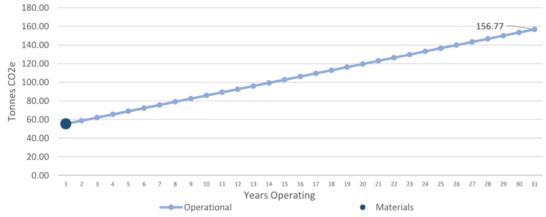
A Sample Analysis

Single Detached

Cz 6

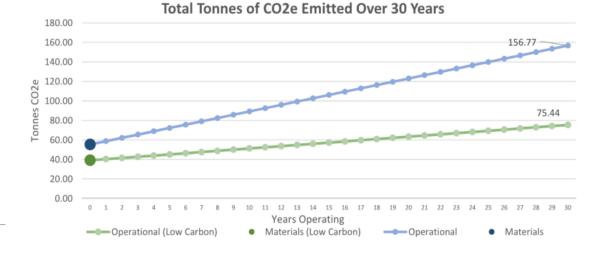
ON




52% < Carbon Emissions Reduction

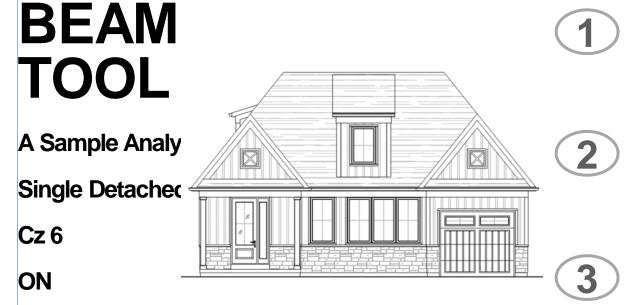
Scenario 1: Exisiting Home - Total Carbon Emissions (30 Year Lifespan)

Material Carbon Emissions (tonnes CO2e)*


Total Tonnes of CO2e Emitted Over 30 Years

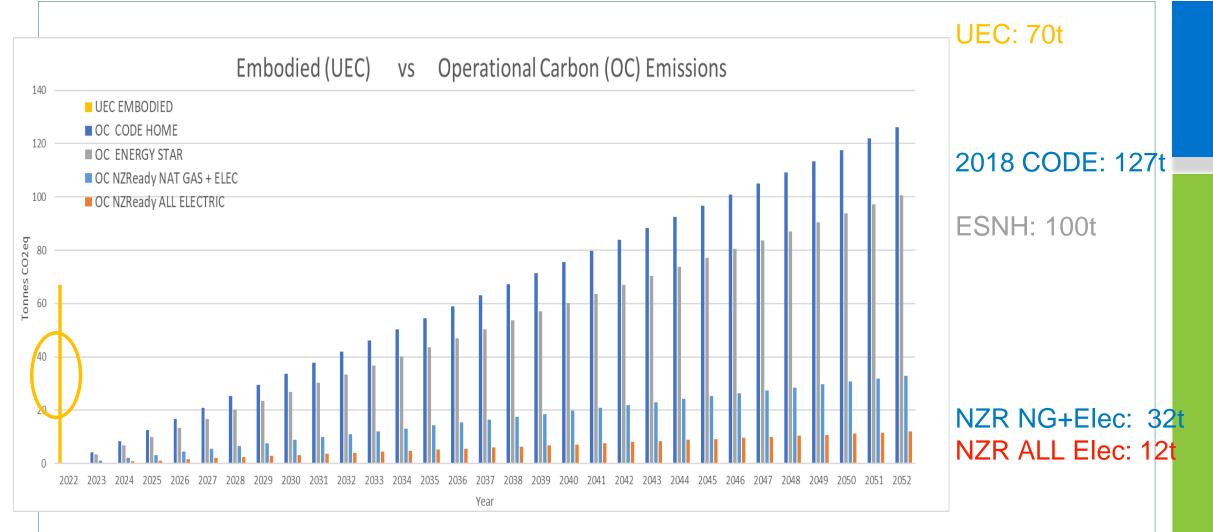
Scenario 2: Low Carbon - Total Carbon Emissions (30 Year Lifespan) Modeled with an Air Source Heat Pump, NGX 250 XPS Insulation and 30-40% Fly Ash Concrete

Operational Carbon	Material Carbon	Carbon Use Intensity (30
Emissions (30 Years)	Emissions (Upfront)	Years)
36.30 tonnes CO2e	39.14 tonnes CO2e	75.44 tonnes CO2e



Embodied Carbon : Top 3

Carbon Emissions Reduction


Carbon Smart Insulation	-15.1 Tonnes CO2/
Concrete - Average Mix	
Concrete - 30 - 40% Fly Ash	-2.9 Tonnes CO2
Average Fiber Cement Siding	
Low Carbon Fiber Cement Siding	-1.9

Operational Carbon Reduction Opportunities

30 year impact of a 2300sqft, Single Detached Home, Zone 6 ON: Ontario Grid

LOW OR ZERO CARBON PROGRAMS AND BENCHMARKS

- LEED v4.1 (website)
- CaGBC/USGBC Zero Carbon Building Standard v2
 - <u>https://www.cagbc.org/zerocarbon</u>
 - Not applicable to houses, small buildings < 3 storeys
- International Living Future Institute (ILFI) Zero Carbon Standard v1
 - <u>https://www2.living-future.org/zero-carbon-standard</u>
- Operational carbon-related codes (energy efficiency):
 - In BC: Energy Step Code (2017) website
 - Coming soon: Tiered National Energy Code for Buildings (NECB)

LEED_M Building Life - Cycle Impact Reduction

- Leadership in Energy and Environmental Design (LEED) v4.1 Website
- Administered by the Canada Green Building Council (CaGBC)
- Most widely used green building rating system in the world

LEED CRITERIA AND CREDITS²²⁷

- Whole-building LCA: Up to 4 points (link)
 - 4 points: minimum 20% reduction from "baseline" in GWP and at least 10% reduction in at least two other environmental categories
- Building product disclosure and optimization environmental product declarations: 2 points (<u>link</u>)
 - Select at least 20 products from manufacturers that have EPDs for their products

Zero Carbon Building Standard, v2

		ZCB-Design v2 One-time certification for new buildings and major renovations	ZCB-Performance v2 Annual certification for existing buildings
	Zero carbon balance	Model zero carbon balance	Achieve zero carbon balance
	Embodied carbon	Report embodied carbon	Offset embodied carbon
Carbon	Refrigerants	Report total quantity	Offset any leaks
	RECs and carbon offsets	Provide quote	Provide proof of purchase
	Onsite combustion	Provide transition plan	Update plan every 5 years
	Energy efficiency	Meet one of three approaches	Report EUI
Energy	Peak demand	Report seasonal peaks	Report seasonal peaks
	Airtightness	Report and justify modelled value	Conduct testing if ZCB-Design v2 certified
Impact and Innovation		Apply two strategies	No requirement

Figure 2 – Summary of Key Zero Carbon Building Requirements

Zero Carbon Building Standard, v2

NET EMISSIONS

K C

- Upfront carbon
- Use Stage Embodied Carbon
- End of Life Carbon

OPERATIONAL CARBON

- Direct emissions
- Indirect emissions

AVOIDED EMISSIONS

- Exported green power
- Carbon offsets

Figure 3 – Calculating a Zero Carbon Balance

TELL US...

What Volunteer Programs are you familiar with?

- 1. Living Building Challenge
- 2. LEED v4.1
- 3. CaGBC/USGBC Zero Carbon Building Standard v2
- 4. Other: ?

Next Steps

Class exercise to discuss barriers to:

- **1**. Changing designs
- 2. Changing suppliers
- 3. Changing processes
- 4. Changing Fuels

Small groups come up with ideas and timelines for moving past the barriers

Barriers to Overcome

Upgrade	Design	Suppliers / Trades	Cost	Ideas to Overcome
Concrete				
Cladding				
Insulation				
Windows				
HVAC & Solar				
Other				

Carbon Smart Attributes Summary

Electrify

- Electricity has the lowest operating carbon of all fuels
- Consider investing in electric based appliances and mechanicals

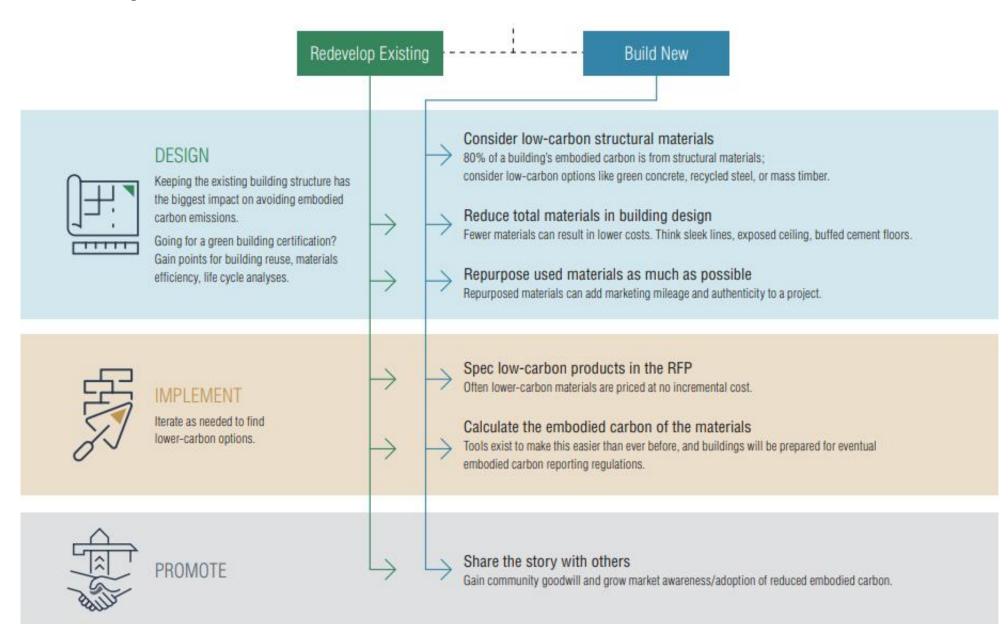
Reduce Energy Consumption

- Reduce operating energy requirements
- Consider long term effects and using renewable sources

Measure

- Reduce how much waste is created during construction.
- Design for longevity, repair, and maintenance

Next Steps


1. Select a carbon analysis tool

2. Perform an operational carbon analysis of current builder packages

3. Contact suppliers and request EPDs

4. Set 1, 3 & 7 year goals to work towards Net Zero carbon emissions

Pathway for Developers to Reduce Embodied Carbon:

4. Set 1, 3 & 7 year goals to work towards Net Zero carbon emissions

Upgrade	1 year	3 years	7 years	Why?	Actions to Take
Concrete					
Cladding					
Insulation					
Windows					
HVAC & Solar					
Other					

THINK NOODD®

These are just place holders for whatever logo is to be used.

Thank you and any final questions

NET ZERO CARBON BUILDING PROFESSIONAL Thank You for participating in this workshop along the path of achieving the EEBA NET ZERO Carbon Building Professional designation

