General Overview

 The intent is to keep air from moving across the building enclosure carrying heat and moisture to locations that can create problems.

- Primary driver is air pressures
- You can (must) manage the pressure difference
- This is absolutely essential in modern construction.

- Theoretical Framework
 - Material = 0.02 l/s-m² @75Pa
 - Assembly = 0.20 l/s-m² @75Pa
 - -Building = 2.0 l/s-m² @75Pa
- Where does it belong?
 - Inside
 - Outside
 - In between
 - Both

University of Minnesota | extension



Airtightness Code ZERH NZE
ACH @ 50PA 3 ACH 2 ACH 1 ACH

PEN TEST: PURPLE LINE FOR AIR

University of Minnesota | extension

General Overview

- The intent is to control vapor diffusion across a vapor pressure or thermal gradient.
 - Primary driver is vapor pressure
 - That vapor pressure can (should) be managed
- While perhaps not as critical as the other layers, it can't be ignored in ...
 - Very cold climates
 - Hot humid climates
 - High humidity environments

UNIVERSITY OF MINNESOTA | EXTENSION

- General Overview (continued)
 - As the thermal insulation increases the vapor permeance must decrease.
 - Today (due to air-conditioning) you must manage vapor from both directions.
 - And if anything gets wet, generally the only drying potential is by vapor diffusion so there must be a clear drying direction.
 - So, this is more of a strategy rather than a specific layer.

University of Minnesota | extension

Theoretical Framework

- Class 1 = < 0.1 perm
- Class 2 = 0.1 to 1.0 perm
- Class 3 = 1.0 to 10 perm
- Class 4 = > 10 perm

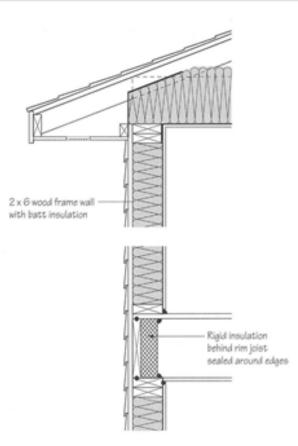
impermeable semi-impermeable semi-permeable permeable

- Current building code (since 1991) requires a Class 1 or 2 vapor retarder
 - 1 perm or less on the warm side in winter.
- Code doesn't address exterior vapor retarders for summer conditions.
 - but inward vapor pressure is real depending on cladding choices
 - and best practice would suggest you must design for inward protection

University of Minnesota | extension

- 1 is an interesting (but not lonely) number! $-\frac{1}{2}$ " OSB (dry cup)
 - smart vapor retarder (dry cup)
 - 1" extruded polystyrene
 - Several coats of oil-based paint

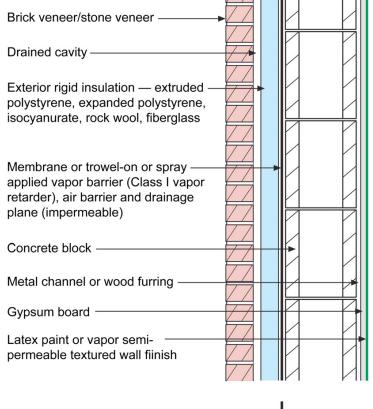
THE MODERN ENCLOSURE CONUNDRUM


- It gets wet from inside out and outside in!
 - In general, it will wet outward in winter and inward in summer
- Things will get wet at some point due to imperfect design, execution, or operation.
- Therefore, all moisture susceptible materials must be able to dry out
 - In general, that can be outward in the winter or inward in the summer

University of Minnesota | extension

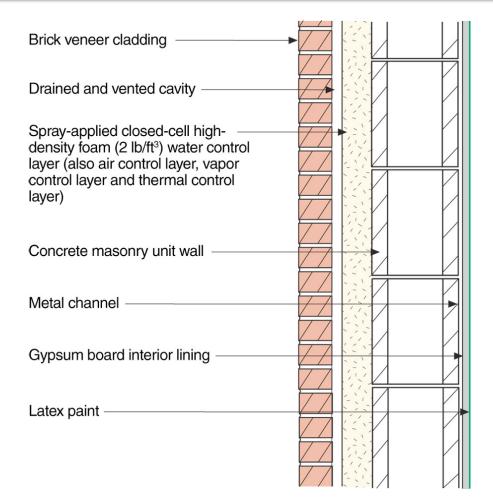
 $\ensuremath{\mathbb{C}}$ 2012 Regents of the University of Minnesota. All rights reserved.

THE MODERN ENCLOSURE CONUNDRUM

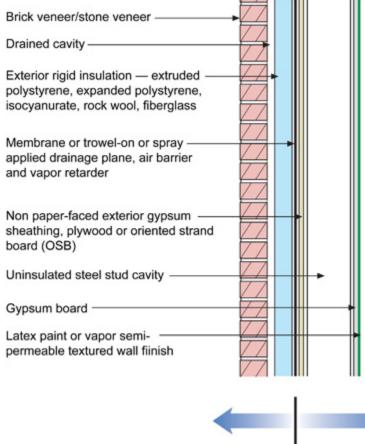

- Has the 2x6 cavity wall hit the end of the road?
 - Too little thermal control
 - Too risky / not robust
 - requires high end execution
 - Too little drying potential
- Biggest Risks
 - Cladding is not drained & vented
 - Poor water control
 - Significant air-conditioning

UNIVERSITY OF MINNESOTA | EXTENSION

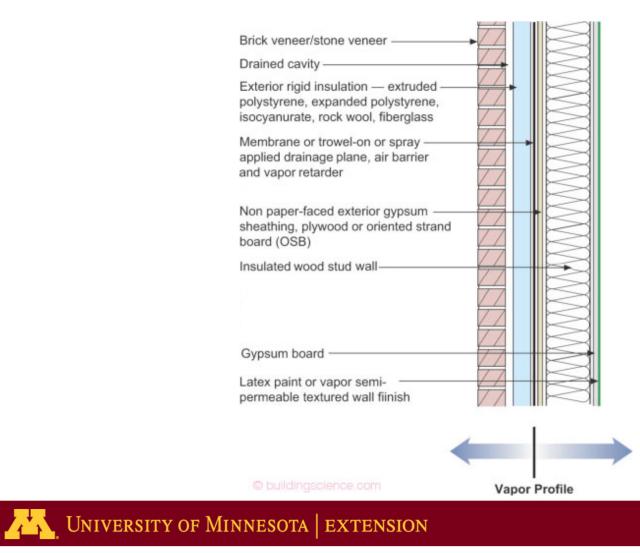
THE PERFECT INSTITUTIONAL WALL



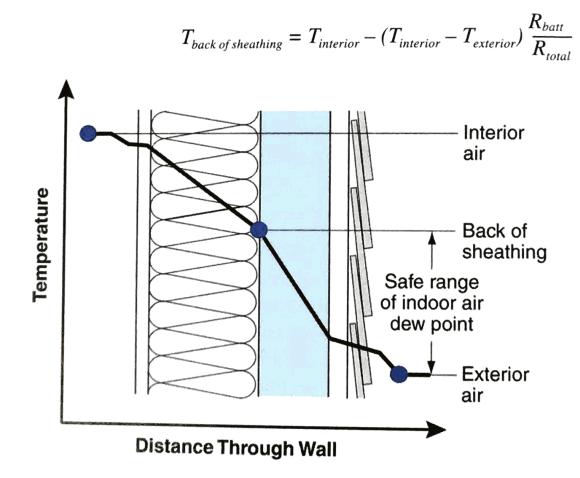
Vapor Profile


4 IN 1 CONTROL LAYER

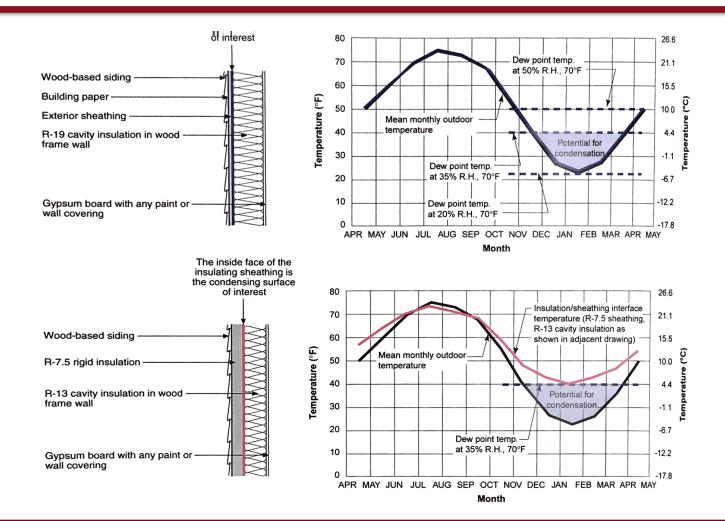
THE PERFECT COMMERCIAL WALL


© buildingscience.com

science.com

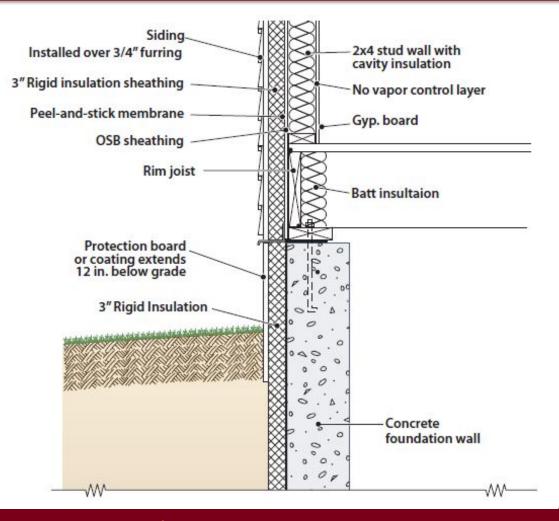


THE PERFECT RESIDENTIAL WALL


HOW MUCH EXTERIOR INSULATION?

CONDENSATION POTENTIAL

University of Minnesota | extension


RATIO OF EXTERIOR TO INTERIOR

Indoor		RH	20	25	30	35	40	50	60
Dew point		°C	-3.0	0.0	2.5	4.7	6.6	9.9	12.7
		°F	26.6	32.0	36.6	40.5	44.0	49.9	54.8
Toutdoor	°C	°F							
- 0010001	0	32	0.00	0.00	0.12	0.23	0.32	0.47	0.60
	-5	23	0.08	0.19	0.29	0.37	0.45	0.57	0.68
	-10	14	0.23	0.32	0.40	0.48	0.54	0.64	0.73
	-15	5	0.33	0.42	0.49	0.55	0.60	0.69	0.77
	-20	-4	0.41	0.49	0.55	0.60	0.65	0.73	0.80
	-25	-13	0.48	0.54	0.60	0.65	0.69	0.76	0.82
	-30	-22	0.53	0.59	0.64	0.68	0.72	0.78	0.84
	-35	-31	0.57	0.63	0.67	0.71	0.74	0.80	0.85
	-40	-40	0.61	0.66	0.70	0.73	0.76	0.82	0.86

High Performance Enclosures: John Straube, 2012

University of Minnesota | Extension

CONTROL LAYERS – MN HYBRID

University of Minnesota | extension

A BETTER WAY TO BUILD

- Step 1: Put the structure on the inside
 - Light-frame construction
 - Timber frame
 - Concrete masonry
 - SEP = Structural Engineered Panel (studless construction)

 $\ensuremath{\mathbb{C}}$ 2012 Regents of the University of Minnesota. All rights reserved.

A BETTER WAY TO BUILD

- Step 2: Put the thermal and moisture control layers on the outside.
 - Perfect Wall
 - (Lstiburek, w/ credit to bright Canadians in CBDs)
 - PERSIST (Makepeace)
 - REMOTE (Alaskans)
 - PERFORM (Texans)
 - Out-sulation (???)
 - Exterior Thermal & Moisture Management System (ETMMS)

ETMMS: FOUNDATION, WALLS, & ROOF

- Build the entire structure;
 - foundation, floor systems, walls, and roof
- Wrap the entire envelope with a "peel & stick" membrane integrated with openings / penetrations
- Add rigid foam insulation
 - 2 to 3" on foundation
 - -3 to 4" on walls
 - 6 to 8" on the roof
- Add furring strips, overhangs, etc.
- Install trim; siding; roof sheathing and roofing

University of Minnesota | extension

 $\ensuremath{\mathbb{C}}$ 2012 Regents of the University of Minnesota. All rights reserved.

University of Minnesota's **Team OptiMN WINS TOP AWARD** In DOE's "Race to Zero" Student Design Competition

INTRODUCING | The Impact Home

INTRODUCING | Multi-Disciplinary Team

14 Students from Building Science, Construction Management, Business, Marketing, and Sustainable Design

Design, analyze, and present an affordable, resilient, high-performance "Zero Energy Ready Home" as infill new construction for a vacant lot in north Minneapolis

Residential Building Science

Collin Coltman Matthew Dries Maria Finsness Tyler Kitzerow Frank Peeters Peter Schneider Kristel Spiegelberg Cavan Wagg

Construction Management

Collin Coltman Jose Aaron Cruz-Salinas Kyle Holmes Jackie Larson Peter Schneider

Business & Marketing Education Aaron Hanson

Master of Science Sustainable Design & Masters in Architecture

Bioproducts & Biosystems Science, Engineering, & Management Maria Fernanda Laguarda Mallo (PhD candidate)

SPECIAL THANKS TO OUR PARTNERS

Urban Homeworks

Minneapolis, MN Affordable Housing Developer

- Non-profit builder and developer
- Met with their project managers several times throughout the competition to receive feedback in the Impact Home's "market appropriateness"

Residential Science Resources

Eagan, MN

Building Science Consultants

- Building science and energy rating consultants
- They provided resources, technical assistance, REMRate support, and financial support for the presentation team's travel to NREL

Department of Energy's CHALLENGE is to build a Zero Energy Ready Home

Urban Homeworks' MISSION

is to produce equitable, dignified, communities

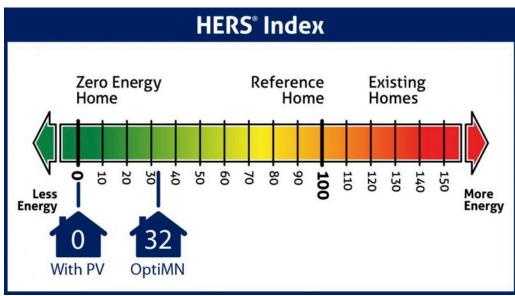
Green Homes North INITIATIVE

is to revitalize North Minneapolis neighborhoods with affordable, sustainable, and quality homes

Team OptiMN's GOAL

is to design a home that makes an **IMPACT** on the community and environment by achieving all of the above

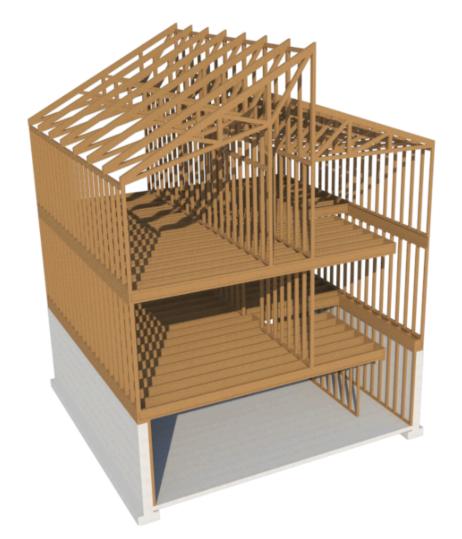
PERFORMANCE GOALS | Site in DOE Climate Zone 6

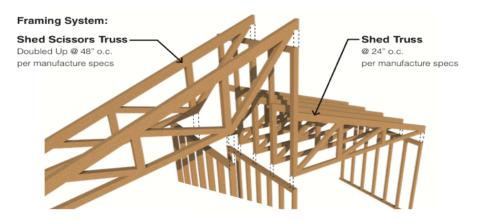

Durable & Long-Lasting

Fortified Home

Energy Efficient | Zero Energy Ready

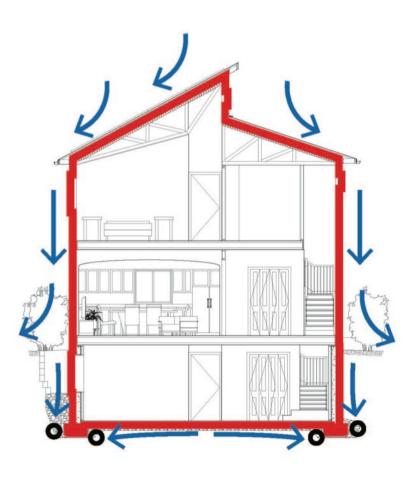
Indoor Air Quality




Water Stewardship

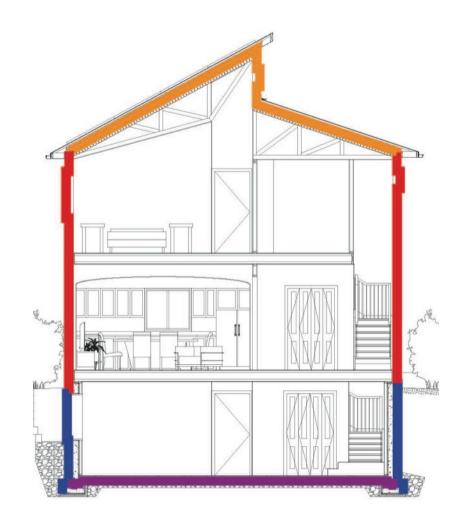
CONSTRUCTABILITY

Approachable and Appropriate Construction Materials and Methods

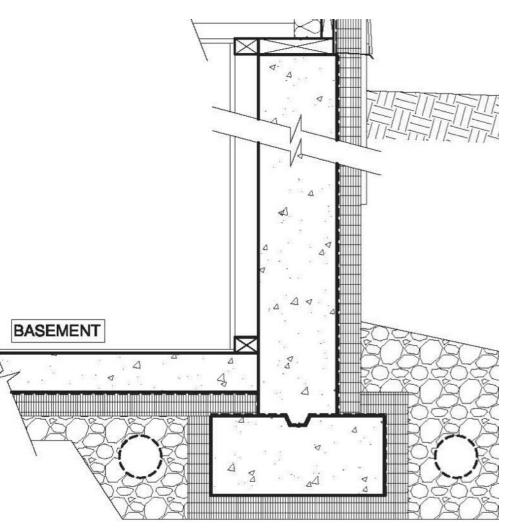

- Simplified design and shape
- Based on traditional construction materials and techniques
- Simplified ducting and hot water systems

Heat Management

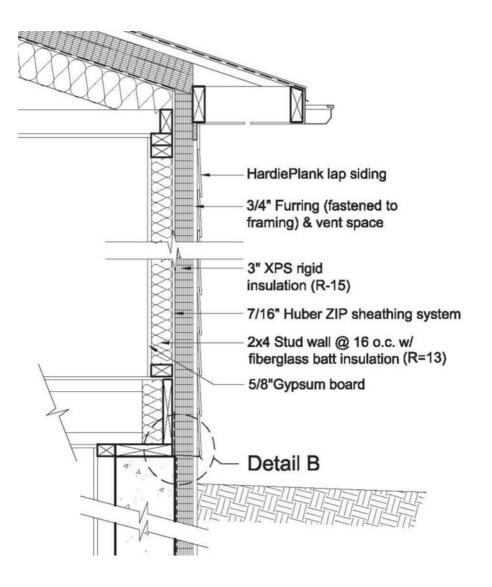
Air Management


Moisture Management

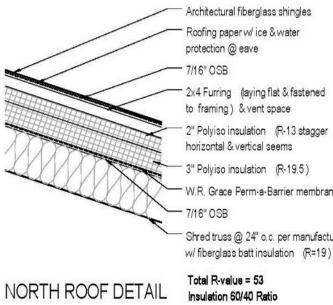
ENCLOSURE DESIGN | 4 Control Layers

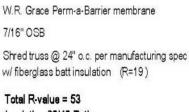

- Thermal insulation to retard heat flow
- Water control membrane to prevent wetting of moisture sensitive materials
- Air barrier to stop unwanted heat and moisture flow
- Vapor retarder strategy to prevent wetting, yet allow drying
 - Orange: W.R. Grace Perm-a-Barrier
 - Red: Huber ZIP sheathing system
 - Blue: Foundation waterproofing
 - Purple: Cross-laminated polyethylene membrane

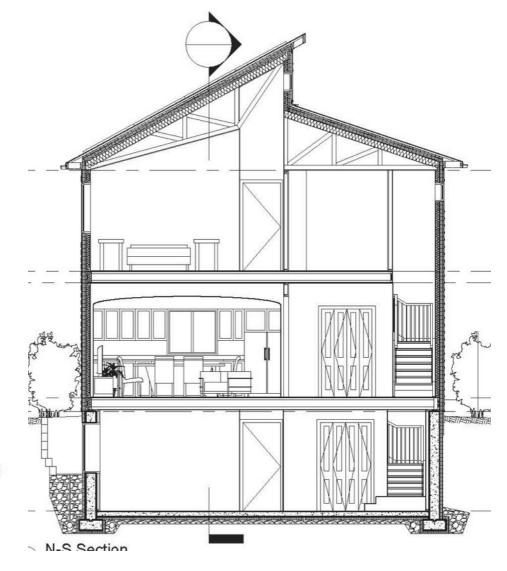
FOUNDATION STRATEGY | Airtight, Dry, & Warm


- Exterior waterproofing and insulation
 - Slab is R-10
 - Footing is R-10
 - Foundation wall is R-15
- Good drainage
- Capillary breaks

HYBRID WALL STRATEGY | Robust & Easy to Construct

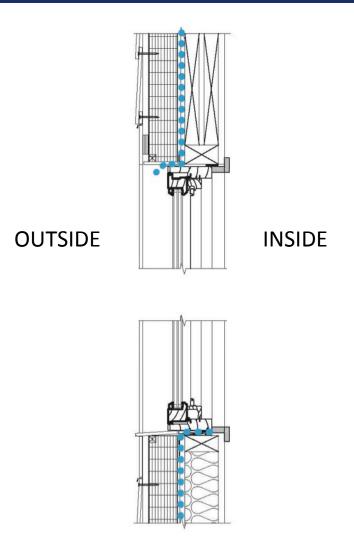

- The air, water, and vapor control layer is over a traditional woodframe wall
- Then rigid insulation, vented rainscreen, and siding is added to the exterior
- This approach limits moisture movement, yet facilitates bidirectional drying

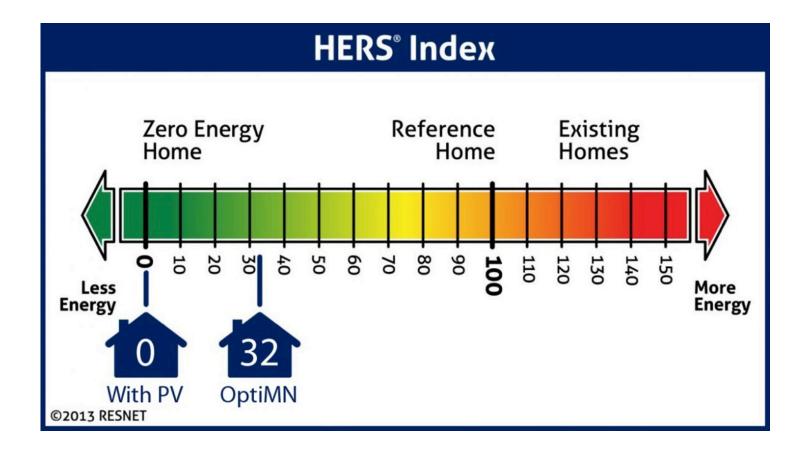




HYBRID ROOF STRATEGY | Adds Flexible Space & Robust

- Provides additional space for design, living, storage, & mechanicals
- Manages moisture & mitigates ice dams much better than traditional sloped ceilings





FENESTRATION STRATEGY | Efficient & Affordable

- Used high-performance doublepane, low emissivity, gas filled windows
 - U-value = .27
 - SHGC = .20
- Cost less than triple or quad pane and still achieved our performance goals

Heating, cooling, and water heating costs is approximately **\$420 / year**

CONCLUSION | IMPACT Home by Team OptiMN

Department of Energy's CHALLENGE to build a Zero Energy Ready Home

Urban Homeworks' MISSION

to produce equitable, dignified, communities

Green Homes North INITIATIVE

to revitalize North Minneapolis neighborhoods with affordable, sustainable, and quality homes

Team OptiMN's GOAL

is to design a home that makes an **IMPACT** by achieving all of the above

HERS score of 32 without PV HERS score of 0 with PV

An affordable house design that is larger, more flexible, and higher performance.

Giving new life to a vacant lot with a highly efficient home design for the future

We successfully met these goals by creating an affordable, highperformance home that truly benefits the owner, the community, and the environment

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | **CONCLUSION** DOE Race to ZERO Student Design Competition | **University of Minnesota**