Passive House

An introduction to Western Technical College's wood built high performance building envelope project

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying 1.5 hours of credit toward Building Officials and Residential Contractors continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

Todays Learning Objectives

- Examine the history of the Passive House movement
- List the standards for Passive House building
- Identify components of a Passive House envelope system
- Understand the importance of analysis and testing
- Explore energy consumption in residential buildings
- Examine the building materials of a passive house mock up
- Compare energy modeling to actual energy consumption

What is Passive House?

- Heard of it?
- What do you already know?
 - 1. Very little—just heard about it today
 - 2. Some knowledge, but have some gaps
 - 3. Feel comfortable with the Passive House Standard
 - 4. I know more than this Bozo, wish someone else was presenting

Passive House History

- 1973 oil crisis
- Increased transportation costs
- Residential heating costs also soar

Illinois Lo-Cal House

- Wayne Schick's team
 Ø Urbana
- Small footprint
- Utilize sun's energy for heating
- High insulation levels
- Passive Solar Movement

Western

Technical College

Passive House Europe

Darmstadt-Kranichstein House

- Dr. Wolfgang Feist
- Early 1990s
- 60-70% total energy savings
- 80-90% total heating savings
- Passive House Institute (PHI) established 1996

Passive House United States

- Katrin Klingenberg, Urbana, Illinois in 2003
- Stephan Tanner, BioHaus @ Concordia Language Village, 2006
- PHIUS 2007!
- Western Technical College starts 1st
 project: 2012

Passive House Design

- Robust, continuous thermal insulation
- Air Tight
- Moisture management
- High performance windows
- Constant (low volume) fresh air supply

A new standard for building

- Passive House
 - R-values:
 - Slab:39
 - Basement wall: 39
 - Walls: 58
 - Roof: 89
 - 0.6 ACH₅₀
 - 4.75KBTU/ft²/yr
 - Energy/moisture analysis: WUFI passive
 - Air exchange: Balanced using ERV/HRV

• MN Code Built

- R-values:
 - Slab: 10
 - basement wall: 15
 - Walls: 20
 - Roof: 49
- 3 ACH₅₀
- 38 KBTU/ft²/yr
- Energy/moisture analysis: none

West

Technical College

• Air exchange: Balanced

A new standard for building

- Passive House
 - R-values:
 - Slab:39
 - Basement wall: 39
 - Walls: 58
 - Roof: 89
 - 0.6 ACH₅₀
 - 4.75KBTU/ft²/yr
 - Energy/moisture analysis: WUFI passive
 - Air exchange: Balanced using ERV/HRV

WI Code Built

- R-values:
 - Slab: 0
 - basement wall: 10
 - Walls: 20
 - Roof: 39
- 3 ACH₅₀
- 48 KBTU/ft²/yr
- Energy/moisture analysis: none
- Air exchange: Exhaust only...

Why Passive House Standard? Resource management

- Energy security
- Extremely low carbon footprint

Why Passive House Standard?

- Comfort
 - Thermal performance
 - Terrific IAQ
 - Quiet
 - Draft free
- Durability
 - Vapor open assemblies
 - Air tight
 - Tested and verified
- Affordability
 - 80% total energy savings
 - 90% Heating/cooling savings

Western's SWiPHT Project

- Existing Greenhouses
- 3 lots, requiring rezoning
- Chimney swifts
- Neighborhood near Western Technical College and UW-La Crosse

SWiPHT House

- Pre-design: Fall 2012
- Design: Spring 2013
- Site Prep: Fall 2013
- Main Structure: Spring 2014
- Finishes: Summer 2014

Western Technical College Goals

- Sustainability is one of our *values*
- Build three Passive Houses
- Student involvement
- Curriculum integration
- Broad Community
 Partnerships

Envelope Elements: Slab

- All envelope elements must reflect:
 - Air tightness
 - Robust thermal performance
 - Continuity of both

Western Technical College

Slab details, continued

Basement Walls

- Thermal layer is connected to under slab thermal layer
- Air tight layer is connected to the under slab polyethylene

Basement Walls, continued

Basement walls, continued

Western Technical College

.

Above grade, wood frame

- 2x6 interior load bearing wall
- Advanced Framing techniques
- OSB sheathing for air tight layer (taped and sealed)
- Exterior balloon frame with 14" i-joists
- Fiber board exterior sheathing
- Dense pack cellulose
- Arguably the most challenging assembly...

Some more wall details: air sealing strategies

Top and bottom plates receive a continuous bead of sealant, as do all openings and penetrations

More Wall details

Foundation/wall connection

Above Grade Walls, continued

14" I-joist balloon frame

Dense Pack Cellulose, fiberboard and Tyvek (note the furring strips for air gap)

Above grade walls, continued

Roof System

- 12/12 pitch for optimum PV
- 24" energy heel
- ¾" plywood
- Ice and water shield
- Zinc standing seam roof

More roof details

· · ·

Roof Details Continued

Sheeting the "A" truss

 Peel and stick ice and water shield

Roof/wall connection

- OSB is also the air tight layer for the roof system (taped and sealed)
- 24" of loose fill cellulose for thermal performance

Western Technical College

Roof/wall connection

- 2x6 framing chase to run HVAC, electricity
- Dense packed
- 5/8" sheet rock to finish

Windows and doors

- Low U-values: 0.125
- SHGC: 55 (requires shading in summer months)
- Triple pane
- Robust weather stripping
- Tilt/turn
- Integrated installation
- Wrapped insulation
- Exterior roll-down shutters

Windows and doors, cont.

- Take advantage of southern exposure
- Some doors are actually large tilt/turn windows
- Mounted in center of wall assembly:
 - Better thermal performance and comfort—always within 7.2 degrees F of interior air temp.

Western Technical College

Air tightness

- Rough-in blower door test
- Target:
 - 109 CFM₅₀ or .3ACH₅₀
- Achieved:
 - 117 CFM₅₀ or .32 ACH₅₀
- Theater smoke and IR cameras to find leaks
- Tape and sealant to tighten the envelope

Smoke Test/IR

After interior finishes are complete, the final blower door test is completed by a HERS rater

Durability Checks

- Thermal Bridge free
- Vapor open
- Tested and verified
 - Through energy modeling
 - WUFI: Dynamic hygrothermal modeling
 - THERM: thermal bridge analysis

WUFI Analys Location: Madison, Wi; cold year;

- Hygrothermal analysis
 - Red= temperature
 - Green= relative humidity
 - Blue=water
- 2 years of weather and indoor conditions: dynamic modeling
- Durability checks assures assemblies are able to dry

Western Technical College

THERM Analysis

- Verify thermal bridge free envelope assemblies
- Required when thermal bridging is a concern and/or an unproven assembly
- Point and linear thermal bridge guidelines

More Passive House Information

- Western's SwiPHt website:
 - http://www.westerntc.edu/swipht/
- Western's SwiPHt Blog:
 - <u>http://swiphthomes.wordpress.com/</u>
- Passive House Institute United States:
 - <u>http://www.passivehouse.us/passiveHouse/</u> <u>PHIUSHome.html</u>
- Passiv Haus Institute:
 - <u>http://passiv.de/en/</u>

