Saving Energy in Existing Multifamily Buildings

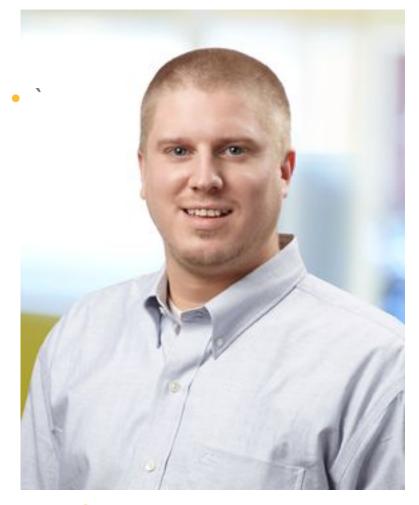
Duluth Energy Design Conference February 21st, 2017

Dan May Center for Energy and Environment

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 hours** of credit toward **Building Officials and Residential Contractors code/energy** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.


Topics

- Who is CEE
- Energy use and building performance
- Retrofit highlights
 - Energy impact
 - Marketability
 - Ensuring success: I, O & M best practices

About me

Dan May, Multifamily Project Coordinator

- 8+ years in residential building efficiency & building inspections
- BPI certified Building Analyst
- Coordinator for Multifamily Energy Savings program for MN Energy Resources
- Perform other multifamily energy efficiency projects and research
- B.S. in Residential Building Science Technology, B.A.S. in Construction Management: U of M-Twin Cities

Who is CEE


The Center for Energy and Environment (CEE) is a nonprofit organization that promotes energy efficiency to strengthen the economy while improving the environment

We conduct research and develop programs so that:

- Businesses operate more efficiently and profitably;
- Government agencies and nonprofits spend less on facilities and functions;
- Utilities achieve their energy-efficiency goals at least-cost; and
- Households save money and improve comfort.

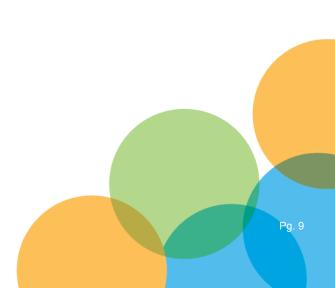
35 Years of Clean Energy Accomplishments

CEE multifamily experience

- Facility assessments of over 2,000 buildings in Minnesota
- Completed over 20 research projects

Current multifamily research projects

- Condensing boiler optimization
- Multifamily ventilation optimization
- Assessment of through-wall condensing furnace/AC packages
- Multifamily aerosol envelope air sealing
- Indoor pool optimization

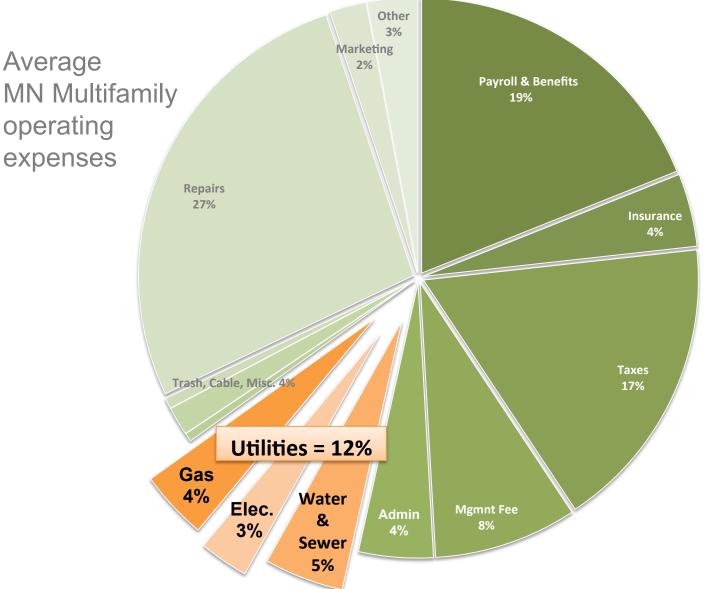

All funded through the MN Department of Commerce's Conservation Applied Research and Development grant program.

Abstracts and full reports available at mncee.org

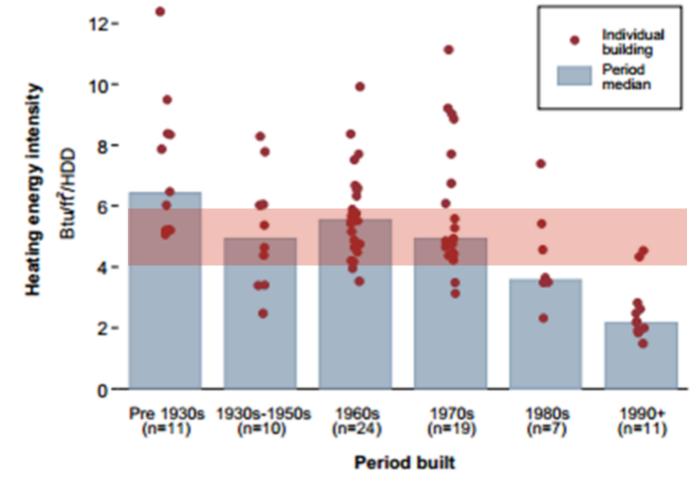
Current multifamily energy efficiency programs

- Energy Star and Enterprise Green Communities multifamily 3rd party verifier
- One Stop Efficiency Shop lighting program with Xcel Energy
- Multifamily Energy Savings program with MN Energy Resources

Energy use and building performance


Water and space heating costs dominate

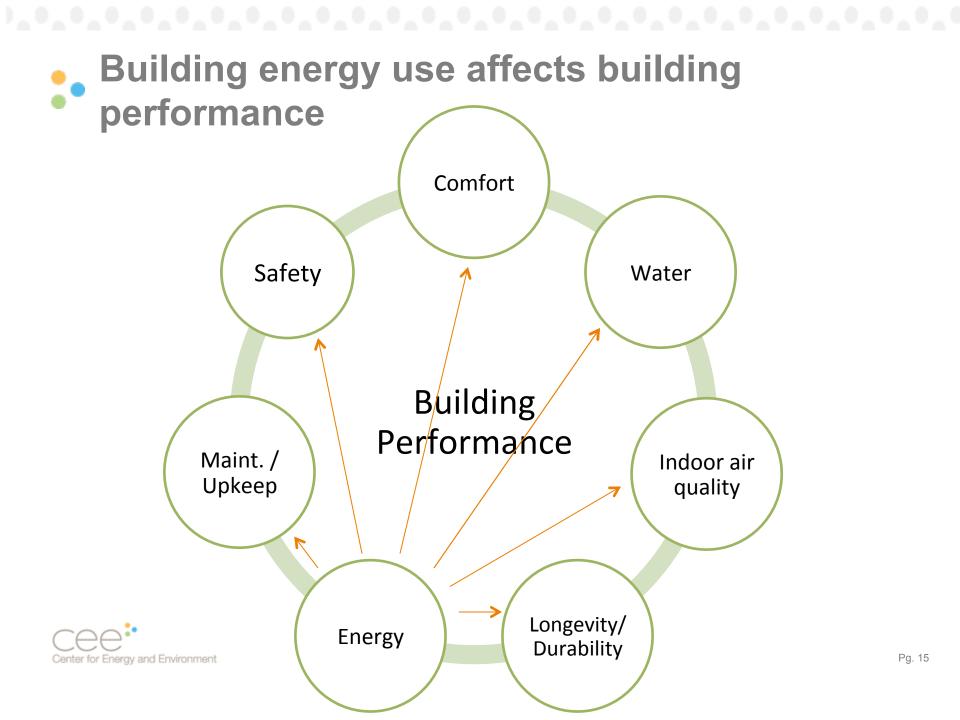
SOURCE: Minnesota Multifamily Rental Characterization Study, Energy Center of Wisconsin and Franklin Energy, 2013; sampled 120 buildings in MN (78 in Twin Cities, 66 Greater MN)



...And yet they are a small piece of the expense pie

Source: 2013 MN Multi Housing Association Expense survey. 388 multifamily properties surveyed

High energy users in (almost) every age category



SOURCE: Minnesota Multifamily Rental Characterization Study, Energy Center of Wisconsin and Franklin Energy, 2013; sampled 120 bldgs in MN (78 in Twin Cities, 66 Greater MN)

Drivers of building energy use

- Efficiency of equipment (Boilers, water heaters, lighting, appliances, ventilation equipment, etc)
- Windows, insulation and envelope details
- Building maintenance protocols
- Staff practices & building operation
- Weather
- Location of building
- Resident habits

Energy efficiency should improve building performance

A good investment:

- Has aggressive energy paybacks
- Lowers O & M costs
- Improves building comfort
- Makes things easier for staff
- Is "tried and true"
- Is easy to implement
- Improves equip. durability

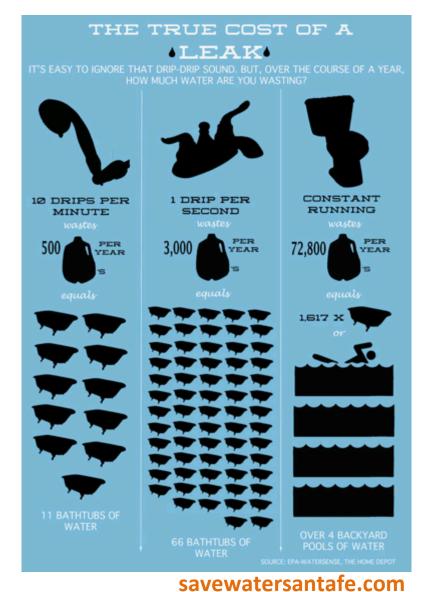
Marketable energy efficiency strategies for MN multifamily

Laundry list items

- Low flow water fixtures
 - Showerheads, aerators, toilets
- Lighting
 - LED replacement, occupancy sensors
- High efficiency washing machines
- Programmable thermostats for common spaces
- Pipe insulation
- Attic insulation and air sealing
- Water heater setting (120 degrees F)

High-efficiency fixtures

Low-flow showerhead, 1.5 gpm Standard, 2.5 gpm


Low-flow aerator, 0.5-1.0 gpm Standard, 2.2 gpm

Center for Energy and Environment

Curbing leaks

• Encourage reporting of faucet drips and running toilets

• Get rid of *all* incandescent bulbs

- CFL or LED replacements are both good options
- \$5+ / year / bulb energy savings when you replace an incandescent
- LED last 50,000 hours rather than 8-10,000 for CFL or 1,200 for incandescent
 - Maintenance costs saved on longer bulb life

Lineal fluorescent corridor or garage lighting

- T12 lamps to T8
- Magnetic ballasts to electronic
- Look for rebates

"Change them now"

Payback:

Other lighting upgrades: Occupancy sensors or timers

- Community rooms
- Computer rooms
- Laundry rooms
- Stairwells
- Garages (partial)
- Hallway (partial)

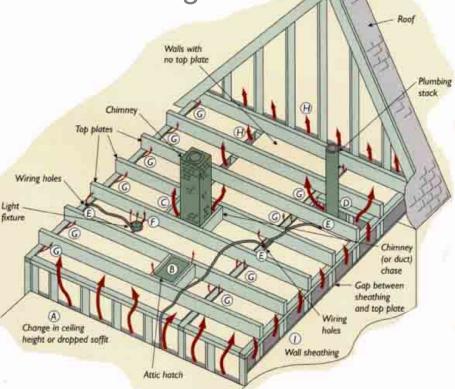
Pipe insulation

Insulate all accessible pipes

Heating pipes

Payback \approx 3.5 years

Hot water pipes Payback \approx 3 years



• Air-sealing: Stop attic air leaks

Air sealing is sealing holes that leak heated air in a building shell with a material that stops air (caulk or foam)

- Attic air leaks can cause ice dams on pitched roofs
- Pre-WWII buildings have most air leakage



Garage Ventilation: CO monitoring controls and garage thermostat 50°F max

- Monitors Carbon Monoxide levels and operates ventilation system only when CO levels are high
- Garage thermostat at 50°F maximum

Good opportunities for energy savings – beyond "the laundry list"

- Optimizing existing boilers
- Building ventilation modifications
- Demand-based hot water recirculation loop controls
- Aerosol envelope air sealing

Acknowledgements

Projects discussed are supported in part by a grant from the Minnesota Department of Commerce, Division of Energy Resources through a Conservation Applied Research and Development (CARD) program

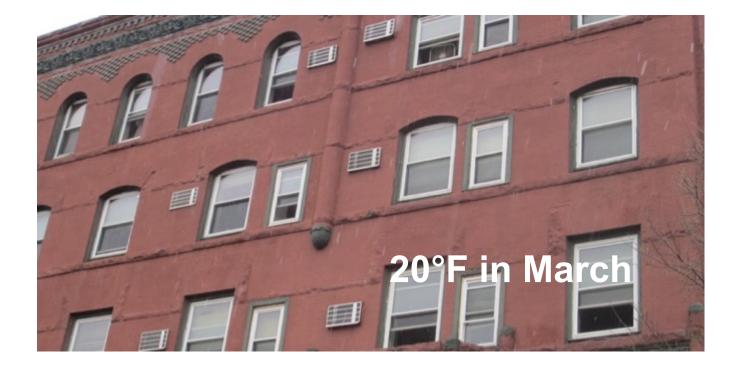
Optimizing Boiler Controls

Control boilers for optimal efficiency

- Condensing & non-condensing boilers
- Optimized outdoor reset
- Finding the lowest max output temp for the building
- Sequencing and staging for optimal efficiency

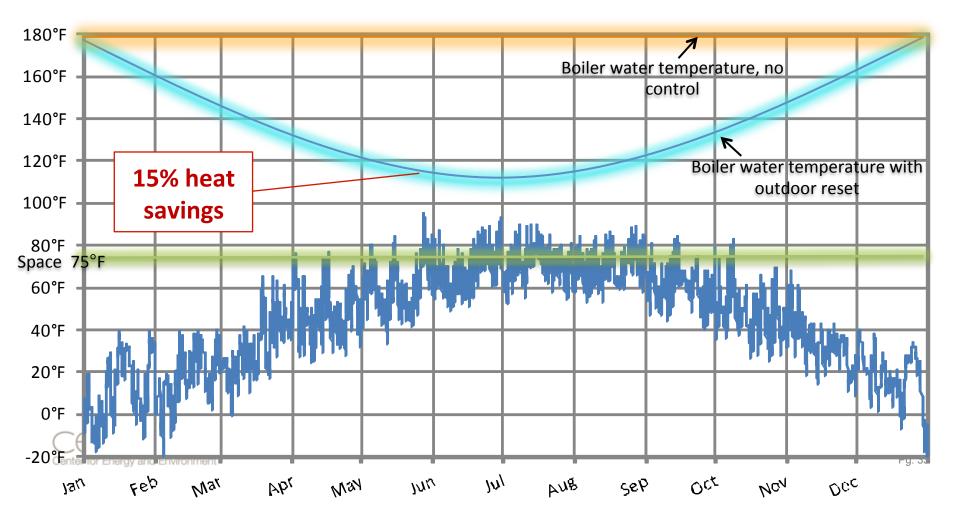
Boiler outdoor reset and warm weather shutdown controls

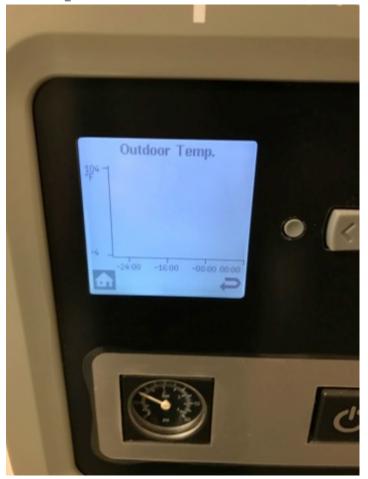
Center for Energy and Environment


10-15% savings on heating costs

Reduced over-heating

Longer boiler cycles


Control the boiler so it doesn't exceed demand



Outdoor reset lowers boiler water temperature

As outdoor temps get warmer, the building heating load gets smaller and the boiler water temperature can be lowered.

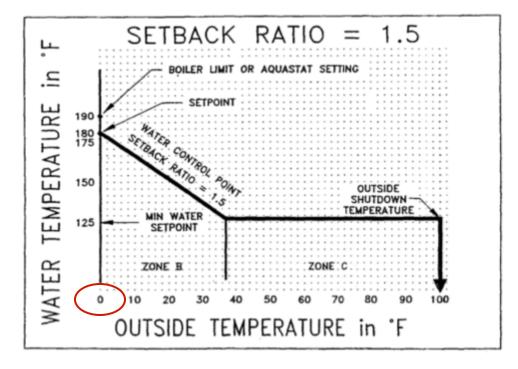
There's something wrong with these pictures

15 minutes could save you 15% on your heating bill

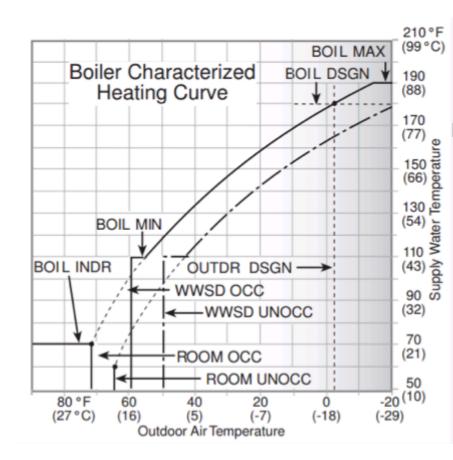
Boiler Room Log: Note the boiler temp vs. outside air temp

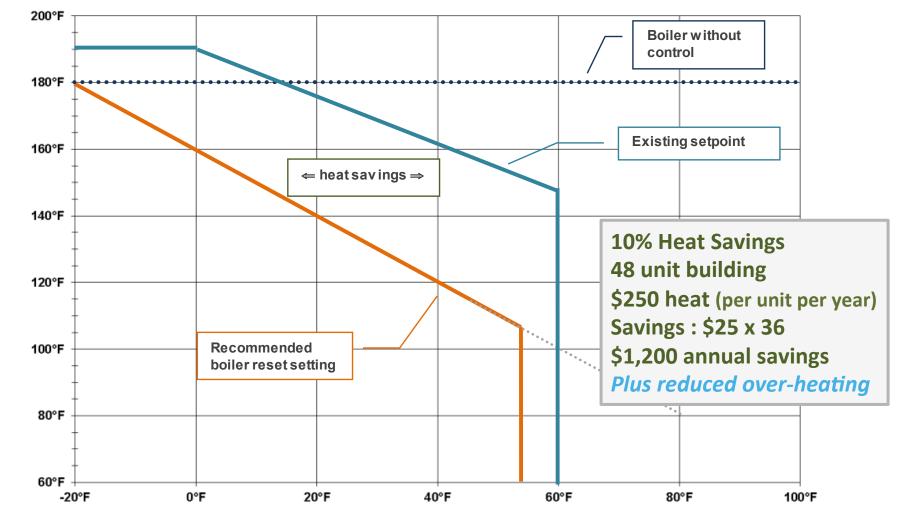
nitials	Date Press				
HV1	1 9 16 7			Air Temp Comments	
m	295161-			I MAN WE	the
m	2001	19 19			1
In	47 12 6 17	11.0		ALLEY V	
4m	50 16/11 1	160			
'n	67 196 17	7 180		1000	
n	77 33/16 17	1 182	660	DHW	_
n	893016 19	180		QAU	
n Sat	nolex 9 10/11/6 1-	172		Diffe	_
n	100 516 17	100	60°	phe	
n	11/0/10/0 19		60	Herat ruman	R No
n	12 K 19/16 1		629	All Normal	
2	13 10 18/16	7 182	61	ok ok	-
2	14/0/22/16 1	7 180	510	at	_
)	15/0/07/16	17 182	510	ok	
0	16/0 11/6	17 129	57	ok	
0	17111416	17 182	8490	or	
San State	18/1/2/1/ 1	8. 180	509	or	
10-15-0	19/1/1/16 1	7 180	390	d	
1	2011/16/16	17 182	450	ok	
2	2111/21/16	7 180	390	or	
)	2211 261/6	7, 300 10		or.	
)	2311 27/16	16/17 152	. 320	Added 1	Th
1000	2412-116	17 180	370	al	
State State	2512-2-16	7 180	300	Roland 6	nd
	2612 9-16 1	7 192	400	ot	-
C. Station	2712-4-16	17 180	350	or	-
and the second			338	d	
-			24	P P	
_	2912-24-16	17 180		ot	
	3012-28-16	17 182		ok	12.01
	3112.316	17 190	300	oc	

Outdoor reset adjustment


14 unit building:9.5% space heating savings (no cost)Reduced building over-heating

At replacement: Identify boiler control limitations


 This boiler control's non-adjustable minimum outside temp of 0°F is not ideal for MN


Understanding reset control settings

- Outdoor design
- Boiler indoor/indoor design/Room design
- Boiler design
- Boiler max
- Boiler min
- WWSD/Shutdown

Adjusting outdoor reset—dollars and cents

Outdoor Air Temperature

Make it easy!!

Center for Energy and Environment

Multifamily Boiler Outdoor Reset / Cutout Control Operating Guidelines©

The tables and charts that follow are CEE's recommended operating guidelines for your building's boiler outdoor air reset and cutout control. Recommended initial settings are based on actual field experience with typical multifamily buildings. However, your specific building may require fine-tuning of the controller settings, as specified in the fine-tuning adjustments instructions later in this document. The final controller settings are expected to lie within the adjustment ranges noted in the attached tables and charts.

Your basic process is as follows:

- Make adjustments to your reset and cutout control settings according to our "Recommended Initial Settings" instructions
- 2- Observe building operation
- 3- Utilize Zone-Specific Issues Checklist (below) to address any zone-specific problems
- 4- Make adjustments to the reset controller utilizing the "Fine Tuning Adjustments"
- 5- Record all adjustments or over heating/under heating complaints, and subsequent control adjustments on the "Control Settings Log"

Zone-Specific Issues Checklist

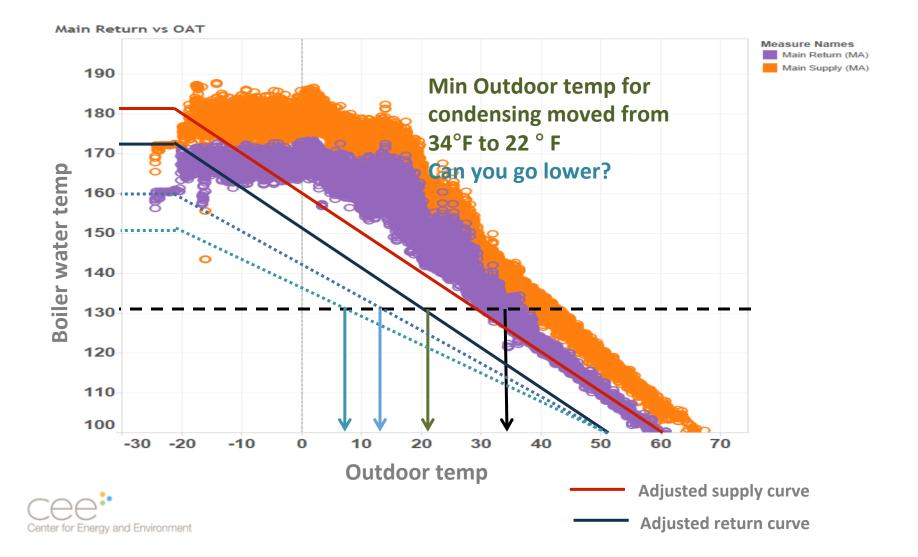
Zone-specific problems must be identified and corrected before fine-tuning the boiler control settings in response to a tenant complaint or observed over/under heating. Below is a list of common zone-specific problems that should be checked when there is a problem.

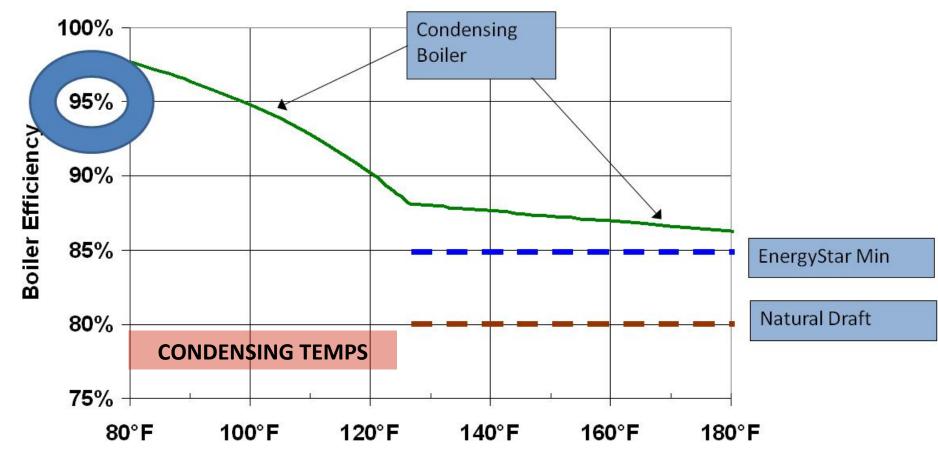
- E Thermostat is inaccurate (check against thermometer), is improperly located (next to heater or window), or doesn't provide proper signal (check for proper on-off of 24 yolt output to zone valve as thermostat is adjusted above and below the current temperature).
- € Zone valve isn't operating or doesn't close tightly. Feel pipe temperature in the zone compared to the main line temperature to see if hot water is circulated when it should and shouldn't be. Manually opening and closing the valve a few times often corrects problems with the valves being temporarily stuck open or closed. If a valve still doesn't respond properly to the thermostat, it may need to be replaced. (Note: Feel the pipe temperature at least one foot from the connection to the main line. Allow time for the pipe and radiators to warm or cool after hot water circulation is changed.)
- Radiator blockage by dust, curtains or furniture will reduce the heat output.
- Unrealistic resident expectations of apartment temperatures above 75°F may not be met. Similarly, it may not be possible to keep an apartment below 70°F because of heat coming from surrounding apartments. Measure and document apartment temperature with a thermometer when responding to heating complaints to address this potential issue with a resident.

Keep a record of adjustments

Tekmar 256 control settings log. For best results, record all adjustments made to the boiler control settings and reasons for adjustment.

		Setting	ROOM OCC	OUT DSGN	BOIL DSGN	BOILMIN	BOIL DIFF	WWSD OCC
		Recommended Initial Setting	80°F	Start with Default (- 20°F)	Start with Default (180°F)	115°F	Au (auto differential) or 22°F	55°F
	Outdoor	Normal Range	60°F to 100°F	-30°F to 0°F	150°F to 200°F	105°F to 140°F	10°F to 30°F	50°F to 65°F
Date	Temp	Complaint / Problem		Lo	g of Setting A	djustments	i	
		Measured room temp: Unit #						
		Measured room temp: Unit #						
		Measured room temp: Unit #						
		Measured room temp: Unit #						
		Measured room temp: Unit #						
		Measured room temp: Unit #						
		Measured room temp: Unit #						
		Measured room temp: Unit #						
		Measured room temp: Unit #						
		Measured room temp:						

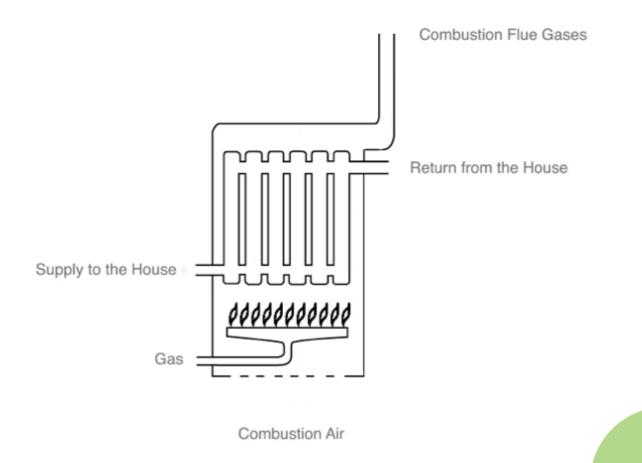

Optimizing condensing boilers



Optimizing outdoor reset

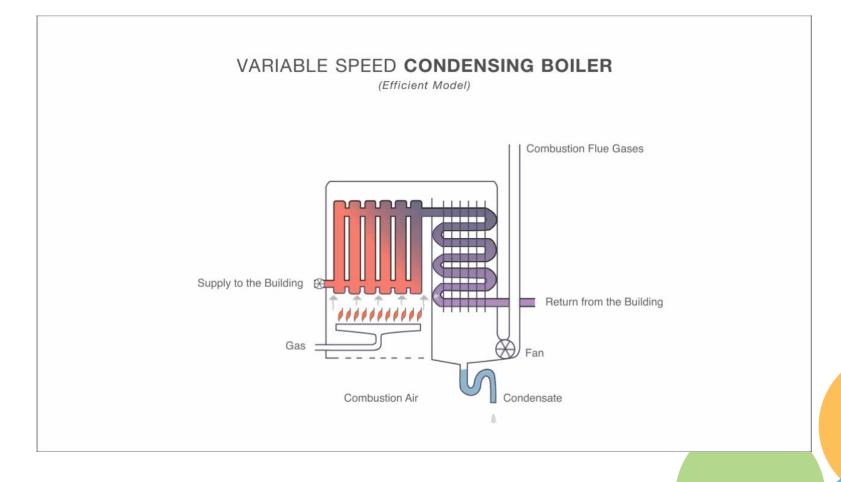
Achieving rated efficiency (>90% efficiency)

Return water temperature


Little difference between boiler supply and return temperatures indicates potential for improvement

1- Adjust reset temps as low as possible 2- VFD pump control optimizes heat transfer as zones open and close

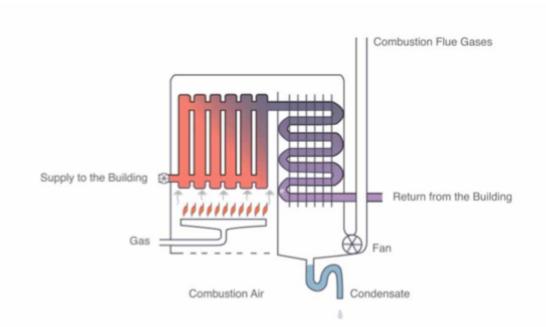
	1	Day	Time	Outside Temp	System Temp	Main Supply Temp	Outlet Temp	Inlet Temp	Return Temp	Boiler Pressure Reading	Capacity %	Comments and Initials
	E	14	1:16	45°	1200	115			102	9/18		Reised Pressure to 18psi
		2 7	:15	170	149°	1420			138°	14		JAH from 86-86 William
Ca	3	12	1:03	33°	132°	122°			118	9/18		JAH Recised pressore to
	4	u	47	38°	120°	116			108°	10/18		HAlt Reised to 18 psi
	5	1:5	50	38°	12.0°	1150			1090	11/18		JAH " n
	6	7."	10.	32°	1198	116			1090	10/17		KiR
	7	11:5	9 1	40°	120°	1140			108°	6/19		Att Reised agen to 90
	8	8:3	3 3	320	132	130°			1210	14/19		
	9	10:00	0 3	32°	130	128°			120°	12/19		JAH Raised pressure to T JAH lossing 2-7 galadag.
	10	10:3	5	320	133"	1310			1190	11/18		P. tr S
	11	1212		2-10 1	- 0	1 0			111	1110		JAH Laised pressure to



Condensing boiler

Pg. 48

Benefits


- 4-10% of gained efficiency
- Eliminate short-cycling
- Getting what you paid "extra" for

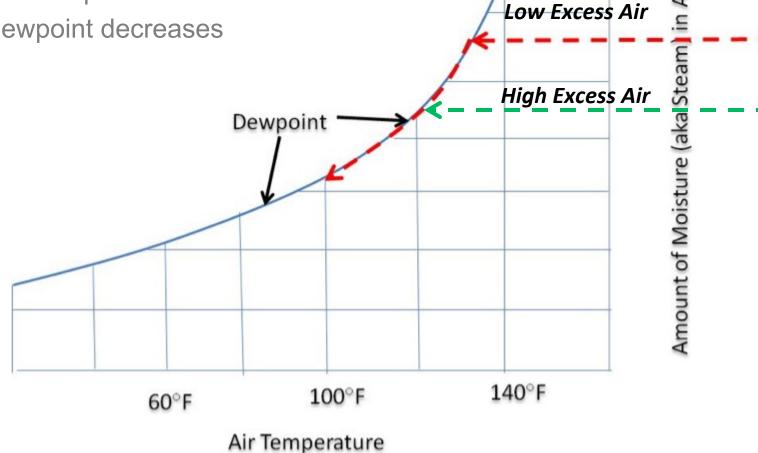
The key:

- Driving down return water temperature and managing excess air
 - Maximize heat transfer at heating elements
 - Send lower temp water out to the building
 - Make sure boiler output matches demand
 - Make sure your piping isn't dumping supply water into return

• How?

Considerations for an existing condensing system

- Proper excess air levels
- Adjusting outdoor reset and sequencing/staging controls
- Reducing maximum output temp
- VFD pumping for increased heat transfer


• OR Considerations at time of replacement

- Boiler room piping
- Choosing a boiler with good on board reset and sequencing/ staging controls

Condensing boiler sensitivity to excess air

- Controlling excess air very important
 - Excess air reduces concentration of water vapor
 - Dewpoint decreases

Oxygen levels in flue gas

Boiler 2

			test	0310
			V5.2	42813307/1
	to310			
V5.2	42813307/1		Company_	
Company			Address_	·
Address	· · · · · · · · · · · · · · · · · · ·	~	Phone	
Phone	· · · · ·		11/20/2014	12:28:07 pm
11/20/2014	12:57:52 pm		Fuel	Natural gas
Fuel	Natural gas		CO2max	11.7%
CO2max	11.7%			
4. 3% 99ppm 155. 8° F 88. 5% 0ppm 65. 1° F 	02 CO Fluegas Temp EFF Ambient CO Ambient Temp Draft Excess air Pressure Q 35 CO2LOW - Q 35 Undiluted CO		4.4% 92ppm 134.2°F 89.0% 0ppm 65.1°F inH20 23.6% inH20 9.24% 115ppm Smoke no.	02 CO Fluegas Temp EFF Ambient CO Ambient Temp Draft Excess air Pressure CO2 Undiluted CO
Smoke no.			Smoke no.Ø	-
Smoke no.Ø	-		HCT	° F
HCT	*F		For question	ms call
For quanting				

Boiler

For questions call-

Table 4: Recommended Combustion Levels

	Natural Gas All Models	Propane Solo 60/175/250	Propane Solo 399
O2 Min.	2.30%	2.70%	3.70%
O2 Max.	5.30%	4.70%	5.20%
CO2 Min.	8.80%	10.70%	10.00%
CO2 Max.	10.50%	12.00%	11.00%
CO Max.	100 ppm	100 ppm	100 ppm

Excess air can dictate boiler efficiency

Measured as % Oxygen in flue gas

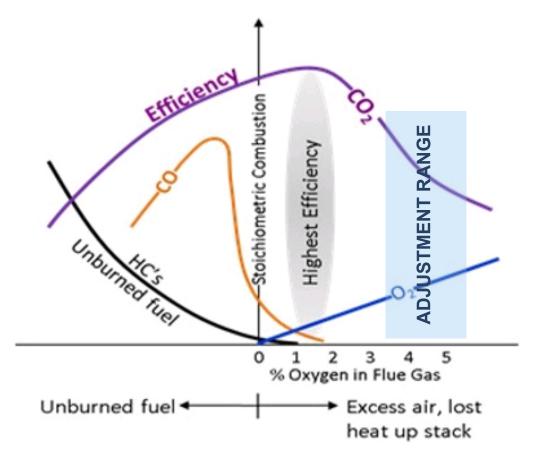


Image source: industrialheating.com

Boiler sequence and firing stage controls: matching output to load for best efficiency

Lower output firing stages have increased thermal efficiency

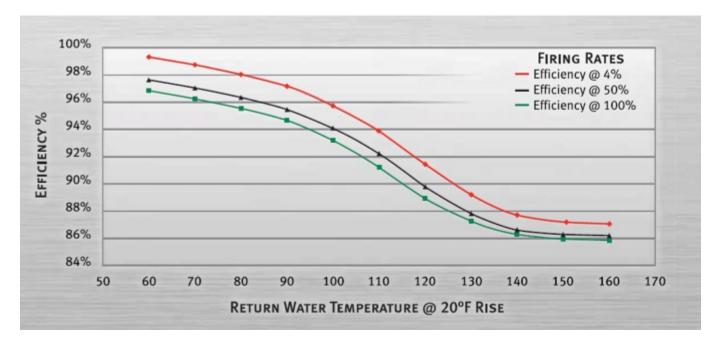


Image source: Lochinvar.com

Lochinvar Knight boiler cascade strategies:

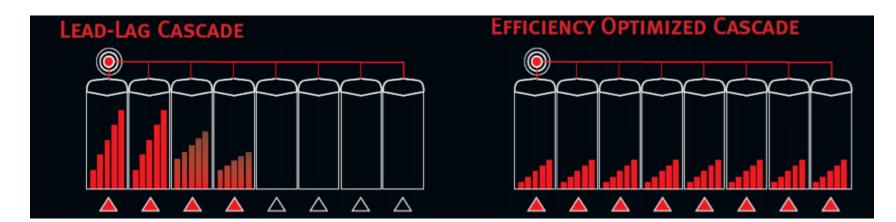
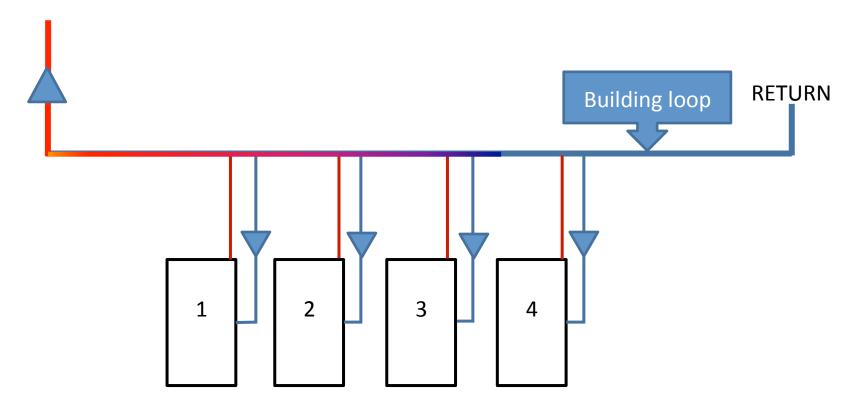
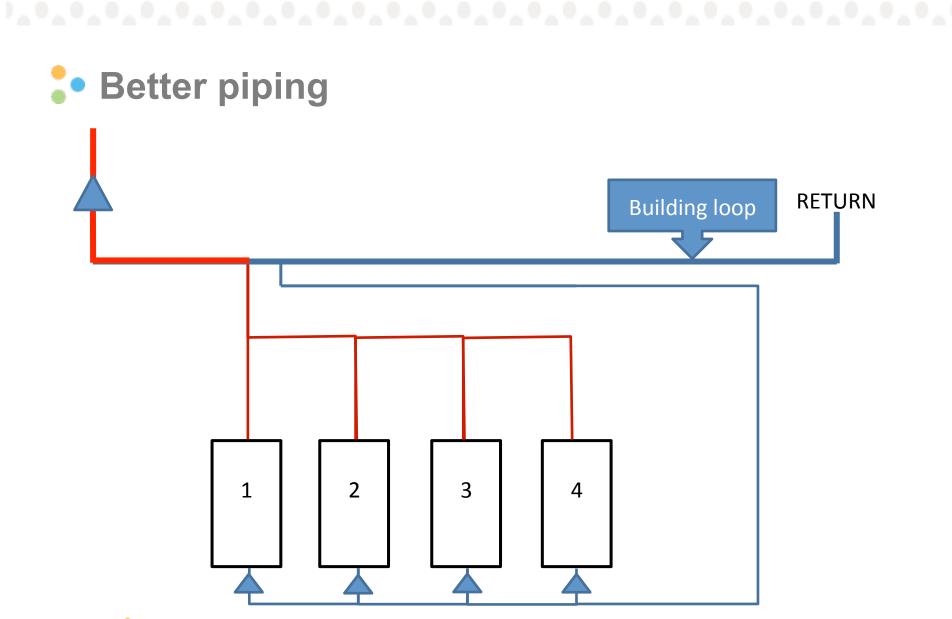



Image source: lochinvar.com



Boiler room piping: address at replacement

Not ideal: Adjacent boilers warm return water

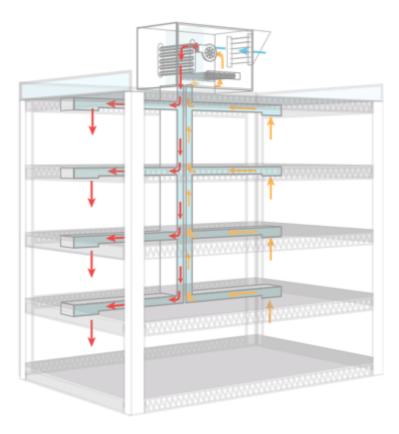
Summary: getting condensing boilers to

- condense!
 - Proper oxygen levels in flue gas contribute to optimal condensing conditions
 - Maintaining aggressive control settings prolongs condensing capabilities
 - VFD pump controls reduce pump speeds at part loads to optimize heat transfer
 - Boiler room piping can dictate return water temps

Optimizing ventilation systems

Individual ventilation systems

- Ducted individually
- On/Off Switch in apartment
- Commonly under-ventilating (no energy savings)

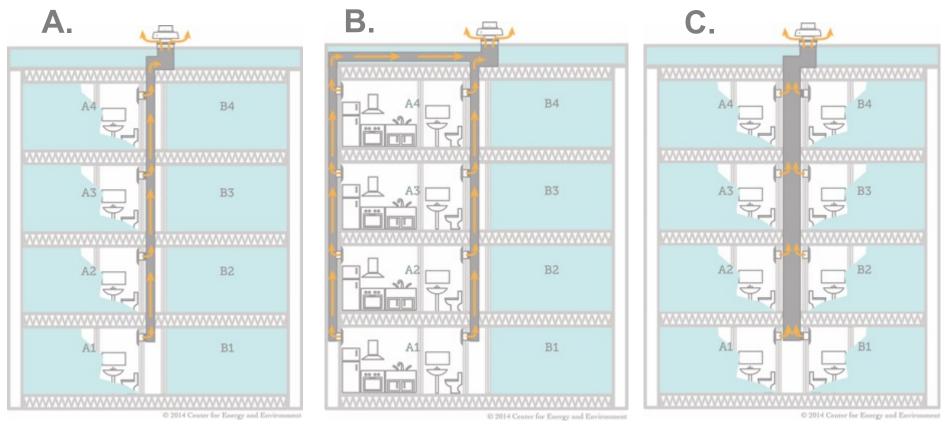


Central ventilation systems

Multifamily central ventilation: What are the issues?

Excessive ventilation flow rates

- Electric use of motors
- Cost of ventilating excessive heated or cooled air
- Lack of effective airflow distribution
 - Inlets clogging over time
 - Balancing dampers tampered with
- Difficulty measuring airflows



Central Apartment Exhaust

Exhaust systems draw air from apartments

Kitchen & Bathroom

Two Bathrooms

Bathroom

Clogged or blocked inlets are a problem!

Flow balancing device behind the grill is often clogged or blocked

• Solution: Fixed Orifice -"Sheet Metal With a Hole"

- Less prone to clogging
- Tamper proof
- Least cost
- Sealed to ceiling
- Hole is sized for correct flow at targeted duct pressure

Case study: Central exhaust retrofit in Minneapolis

- High utility bills
- Ventilation fan noise
- Repeated fan belt replacement
- Odor problems from blocked inlets

Retrofit: clean and unclog ducts

Remove balancing dampers and replace with fixed hole

Replace fan with high-efficiency type and turn it down!

Air seal at curb below fan

Results: Improved distribution

Pre - retrofit >

Very High

High

Good

Low

Very Low

Center for Energy and E

> 45

> 36

+/- 20%

< 24

< 15

x05
4
63
56
147
161
171
30
50
26
15
100
190
NA

84

67%

67%

17%

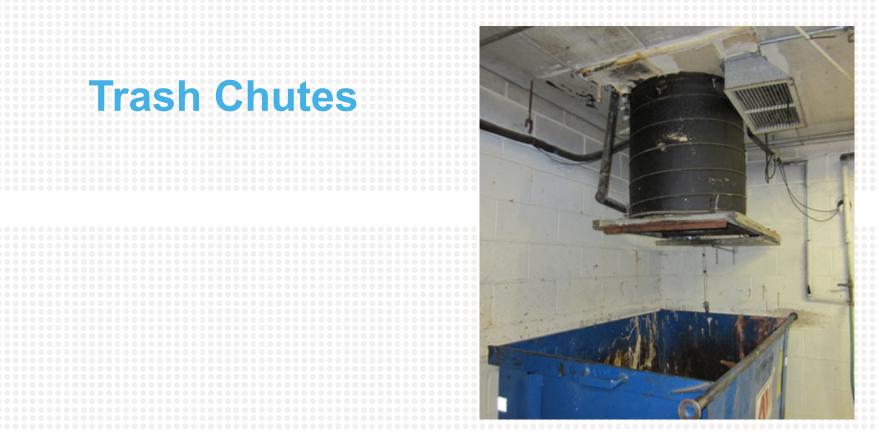
17%

17%

Post-	retrofit	>
		-

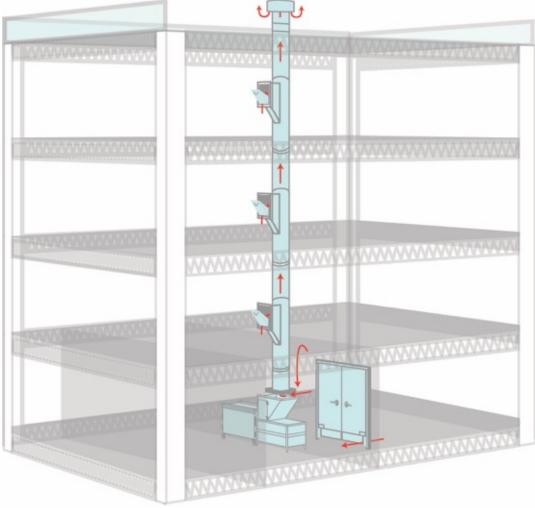
>	x05
	4
	34
	34 32
	34
	31
	30
	33
	34
	34
	31
	35
	35
	34
	30
	NA

0
0
100%
0%
0%

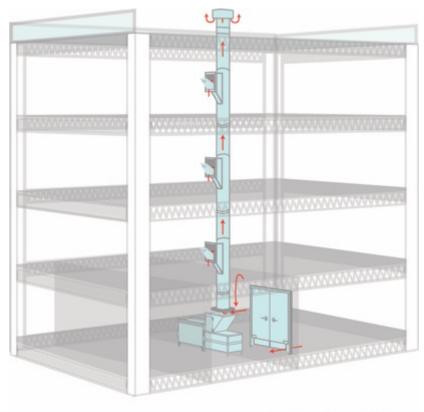

Savings Details

Whole building	
CFM savings	2,299 cfm
Gas savings (NG)	4,706 therms
Fan power savings	21,979 kWh
Cooling savings	5,539 kWh
Energy Cost savings*	\$5,535
Payback	6.1 yrs

Per unit annual savings						
Gas savings (NG)	58 therms					
Electric savings	339 kWh					
Energy Cost savings*	\$ <mark>67/uni</mark> t					



*Based upon \$0.65/therm and \$0.09/kWh


Typical Trash Chute Configuration

Improving trash chute performance

- Keep trash room doors shut
- Weatherstrip and seal off trash rooms
- Adjust cap height

© 2014 Center for Energy and Environment

Case study: Trash Chute retrofit in Minneapolis

- Reduced rooftop cap height to restrict stack flow
- Sheet metal housing at dumpster isolated trash chute from building air

Energy Savings, Reduced Odors

- Estimated \$1,500 annual heating savings
- Reduced odors in nearby lobby, management offices
- 1.3 year payback

Make sure the chute door is closed

Ventilation summary

- Over or under-ventilating systems have big impacts on building performance
- Reducing ventilation flow saves on operating costs
- Using a fixed orifice flow balancer will save costs and improve long-term performance
- Trash Chute modifications can improve odor issues and save energy

For more ventilation information

Multifamily Ventilation Assessment and Retrofit Guide

Conservation Applied Research & Development (CARD) Report

Prepared for: Minnesota Department of Commerce, Division of Energy Resources

Prepared by: Center for Energy and Environment

Controlling hot water recirculation loops

Hot water recirculation loops

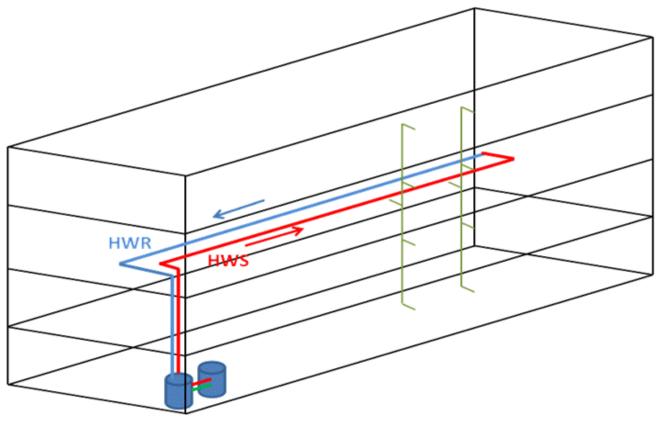


Image source: HMG, Inc

DHW energy losses

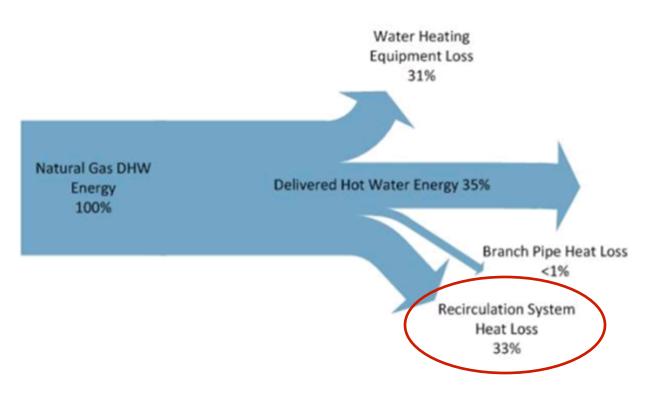


Image source: HMG, Inc. Multifamily Central Domestic Hot Water Distribution systems. 2013

Rochester installation

- 3-story
- 39 unit building
- Built in 1955
- Failed water heaters
- Shower heads and faucet aerators installed along with building assessment

25% total hot water savings 10% DHW savings from Demand Controller Payback = 3.5 years

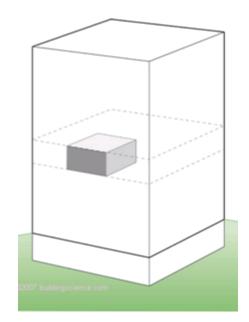
Enovative's Demand Controller

- Control stops pump when there is no building demand or the recirculation loop temp is above 100F
- Pump run time reduced from 24/7 to average 14 mins / day (ARIES Collaborative/Building America study in 2014)
- Turns pump on upon sensing hot water demand

Payback:

Aerosol envelope air sealing

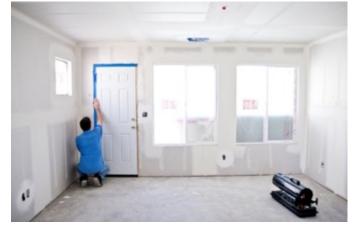
Concept:


- Pressurize apartment unit
- Spray air sealing fog
- Sealant particles build up on gaps as they exit the room

Multifamily compartmentalization

Creating an interior air barrier around each unit

- Reduced stack effect
- Reduced noise transfer
- Reduced odor transfer/improved IAQ
- Increased comfort
- Increased energy efficiency



Nuts and bolts

PREP WORK

- Horizontal surfaces covered
- Windows, exterior doors covered
- Finished floor covered (ideal before flooring is installed)
- Door handles covered
- Plumbing fixtures covered
- Ceiling fans covered
- Radiators covered
- Sprinkler head openings covered
- Remove outlet/switch plates

Preliminary results: Very air-tight

- Air tightness result: 114 to 25 CFM50 total unit leakage (8 units sealed)
- Averaged 0.45 ACH50
- 78% to 95% tighter than the new code requirement of 3.0 ACH50
- 12-13 times tighter than Energy Star requirement for multifamily

Sealed penetrations

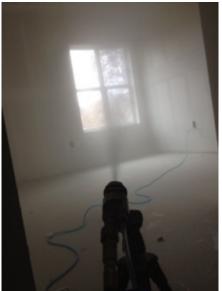
Identifying the opportunity

IDEAL CANDIDATES

- Moderate rehabs "floors and cabinets"
- New construction

NOT IDEAL

- Where carpet is installed
- If occupied



• Air sealing at lower cost?

Aerosol

- Prep
- Sealing process
- Simultaneous air leakage testing ensures results

Vs.

Manual air sealing

- i.e. caulking/foaming
- Architectural specification
- Labor
- Air leakage test

=> Uncertain results

Marketable?

BENEFITS

- Reduced noise transfer
- Reduced odor transfer
- Improved comfort
- Simultaneous air leakage testing ensures results
- Expedited process, labor savings potential
 CONSIDERATONS
- Cost
- Not a solution for large air leak gaps
- Rehab or new construction only
- Balanced ventilation is crucial

Condensing through-wall furnaces

- Through-wall furnaces becoming more popular in Multifamily buildings
- Recently, 4 out of 5 manufacturers of through-wall furnaces introduced condensing heating products
- Non-condensing: 80% AFUE, Condensing: Up to 95% AFUE

Potential/Unresolved Issues: Existing Buildings

- How will condensate be handled?
 - Drain lines
 - Neutralization requirements
- Potential for icing issues at exterior grille during cold weather?
- Have any impact on occupant comfort?
- How do measured energy savings compare to initial savings estimates?

More of a concern for existing buildings

Round-up

- Controlling boilers (both condensing and noncondensing) effectively is a low-cost way to save energy and improve occupant comfort
- Central ventilation systems that provide too much ventilation air can be modified for significant energy savings (plus improved ventilation performance)
- Demand-controlled recirculation loop controls on hot water systems are low costs controls that save energy without affecting performance
- Aerosol envelope air sealing may be the future's technique for meeting energy performance requirements

Make sure to look for rebates!

2017 Business Lighting Rebate Application

Lighting Equipment Rebate Project Type:

ebate Project Ty	e: 🗆 New	Construction	Retrofit
------------------	----------	--------------	----------

Existing/Base Equip.		New Equipment										
Code		Code	LED	Fluor.	Fluor.	Fluor.	Fluor.			is This		
(from	Existing/	(from	Bulb/Fixture	Ballast	Ballast	Lamp	Lamp		Annual	Space		
Lighting	Base	Lighting	Wattage	Make	Model	Make	Model	New	Hours of	Air		
Tables) ¹	Quantity	Tables)	(If applicable)	(if applicable)	(if applicable)	(if applicable)	(f applicable)	Quantity	Operation ²	Conditioned?		
										CYes CNo		
										Tes No		
										Wec ONo		
										CYes CNo		
										Tes No		
										CY'es CNo		
										Tes No		
										CYes CNo		
										Tes No		
										CYes CNo		

¹Existing T12 fixtures must be <u>working</u> to be eligible for Retrofit Rebate.

Occupancy Sensor/Photocell Rebate Project Type: New Construction Retrofit

	Controlled Fixtures						Occupancy Sensors/Photocells				
Code			Quantity		Code	Code Is This Total		Rebate	Total Rebate		
(from	Total LED	Low Wettage	Controlled	Annual	(from			Opacc	Oost of	per	(Sensor Qly X
Lighting	Wattage	T5/T8 Lamps	by Sensors/	Hours of	Lighting	Sensor	% of time	Air	Sensors/	Sensor/	Rebate
Tables)	(if applicable)	(if applicable)	Photocells	Operation ²	Tables)	Quantity	Lights Off ³	Conditioned?	Photocells	Photocell ⁴	per Sensor)
		□Yes □No						CYes CNo	\$	5	\$
		□Yes □No						CYes CNo	\$	5	\$
		□Yes □No						DYes DNo	\$	\$	\$
		□Yes □No						_Yes _No	\$	\$	\$
		□Yes □No						⊡Yes ⊡No	\$	\$	\$

³ Guidelines for % of Time Lights Off (TLO)

Total Rebate Amount \$ _____

Guidelines for se of time cignite of	TEOJ.					
Sensor Type TLO		Sensor Type	1	TLO	Sensor Type	TLO
Occupancy Sensor - Wall Mount	30%	Photocell - Continuous Dimming		43%	Photocell - On/Off	27%
Occupancy Sensor - Celling Mount	30%	Photocell - Multiple Step Dimming		35%	Integrated Occupancy Sensor	30%

Commercial and industrial boiler heating system and components rebate application

STEP 6 Equipment information

Please complete all information for the installed equipment for which you seek a rebate. Required information submitted as part of application to be eligible for a rebate.

Please reference all rebate requirements prior to installation to ensure eligibility.

Make a separate entry for each measure installed. If more space is needed, please photocopy this form and subn

Rebate minimum efficiency requirements

Equipment or service	Rebate							
Hot water boiler system								
85% to 89.9% AFUE (< 300,000 Btu/h input)	\$900 per MMBtu/h input							
85% to 89.9% thermal efficiency (300,000 Btu/h or greater input)	\$500 per wiwiBlu/II ilipul							
Hot water boiler system								
90% AFUE or higher (< 300,000 Btu/h input)	\$2,500 per MMBtu/h input							
90% thermal efficiency or higher (300,000 Btu/h or greater input)	\$2,500 per wiwiBlu/II Input							
Steam boiler system								
83% AFUE or higher (< 300,000 Btu/h input)	\$750 per MMBtu/h input							
83% thermal efficiency or higher (300,000 Btu/h or greater input)	\$750 per MMBlu/Hinpul							
Other boiler heating system components and services								
Continuous modulating burner (retrofit or upgrade only)*	25% of equipment cost							
O2 trim control	25% of cost							
Linkageless control	25% of cost							
Electronic programmable setback thermostat for existing buildings**	50% of cost							
Vent damper	50% of equipment cost							
Boiler outdoor air reset control (retrofit or upgrade only)*	100% of equipment cost							
Boiler cut-out control	100% of equipment cost							

Managers: Take advantage of this program!

- Free install of showerheads and faucet aerators
- Building assessment
- Start-to-finish oversight of any chosen retrofits

 It's
 Major cities served:

 Cloquet
 Cloquet

 Grand Rapids
 Bemidji

 Eagan
 Rochester

 Park Rapids
 Rosemount

 Hinckley
 +100 other MN cities

More info CEE programs and research: mncee.org

Minnesota Solar Pathways

This project undertakes stakeholder collaboration and technical analysis to support Minnesota's deployment of solar electricity. Dec 15, 2016 | Project

CEE in 2016: Boots on the ground

As our past year shows, here at CEE we know that we can't get to *clean* energy without getting our hands *dirty*. It's all about rolling up our sleeves and digging in.

Dec 12, 2016 | Blog

From the Blog

Staff Spotlight: Russ Landry

In this series, learn how each CEE staffer contributes to reducing energy waste while improving the environment. This week, we profile senior mechanical engineer Russ Landry. Fob 6, 2017 | Blog

See All Posts :• Latest Tweets

Ctr for Energy & Env

#Free energy wrkshp for #WorthingtonMN residents 2/18. Qual. for discounted energy visitsave \$ & #energy at home. ow.ly/Vyn6308TpP

Dan May dmay@mncee.org 612.244.2425

