Poor Spray foam installation

Insulating is a system

More choices offer better performance

Careful installation of all insulating systems are essential for good performance

Blown cellulose insulation

High density blown fiberglass

264

SPF- spray polyurethane foam

SPF- spray polyurethane foam

Again....benefits of exterior insulation

New products and techniques

4% of total thermal resistance is outside (only OSB)

Surface temperature calculation - 2 x 6 walls, w/ R-19 insulation + R 10 ext.

Temp. @ sheathing

41% of the total wall R-value is outside sheathing plane (OSB)

Class III Vapor retarders (semipermeable) are permitted if:

Permeance of < 10 or >1.0

Climate Zone	Minimum Cont. Insulation R-Value		
	2 x 4 walls	2 x 6 walls	
Marine & Zone 4	R-2.5	R-3.75	
Zone 5	R-5	R-7.5	
Zone 6	R-7.5	R-11.25	
Zones 7 & 8	R-10	R-15	

Summary of Proper Insulation

- R-Value is assured
- Reduce thermal bridging
- Calculation for load & equipment match
- Thermal comfort is provided
- Sound reduction occurs
- Energy savings

278

Innovative wall systems

Alternate methods can provide benefits

279

- Wood dominated industry
- Wood constitutes 84% of residential construction
- 1.3 million single family detached built annually

What constitutes the other 16%?

Structurally insulated panels provide high R-Value assemblies

ICF Subdivision

Window Systems

284

- Provided natural light and ventilation
- Passive solar heat
- Architectural element
- 1/3 to 2/3 thirds of total AC loads

What defines high performance windows?

287

- Heat gain & heat loss reduction
- Energy efficiency
- UV light reduction
- Durability
- Wind and rain resistance

Four technologies are common:

- 1. Low emissivity coatings
- 2. Insulated spacers
- 3. Gas filled
- 4. Insulated frame tech.

Wintertime Heat Loss

Summertime Heat Gain

Windows exhibit each type of heat transfer – both summer and winter!

Conduction –through the frame, spacer, and glass

Radiation – direct, reradiated, inside, outside and between the glass

Convection – inside, outside and between the glass

HIGH PERFORMANCE HOMES AND KEY WINDOW CONSIDERATIONS YOU DON'T GENERALLY THINK OF...

Windows and Thermal Comfort

http://www.cardinalcorp.com/technology/applications/comfort-calculator/

Windows and Thermal Comfort Comfort Calculator BACK OF ROOM COMPORT ONLY COMPORT WITH SHADES OPEN for their stratistics possili and the statistic has been a set of to the localizer proceed? Nip tabeline of p. withorts or from 11 Eleror Descourts with the Incombulate Second and the second s Darry & with social that the marginal the channel. makes makes

WINTER NIGHT

SUMMER DAY

(oc2010#	1.65 COMPANY	20	sain comerci	A DA WALL WALL	W PROFESSION
TORONTO, DN			0.0	3.12	0.60
	DAP WHITE	sine hes there?		LIBET TRAKS	EXOSTRACIÓ
window with	T.EHM	NONE	2	82%	0.75
MEDIUM	- each each	Prived Stank		12849-20087	
10345	AIR	CLASS 1	S.Brant	Lasada Hobel	ENCREM THAT

Windows and Thermal Comfort Does Triple Pane really make a difference?

ASHRAE 55 and Windows: Zone 5-6:

- 1m from glass, patio door
- Winter: Acceptable room side glass threshold temp= 57F or 14C
- Summer: Discomfort comes from any hour/elevation with solar gain greater than 70 btu/hr·ft²·°F

• Single, metal frame:

- Winter: 3000+ hrs of discomfort
- Summer: 300+ hrs of discomfort
- Double , insulated, SHGC 0.55
 - Winter: 500+ hrs of discomfort
 - Summer: 75+ hrs of discomfort
- Triple: insulated, SHGC 0.22
 - Winter: negligible
 - Summer: negligible

Effective R-value Triple Glazing vs. R5 Sheathing

Window-to-Wall Ratio (WWR)

Effective R-value (hr·ft^{2.°}F/Btu)

Effective R-value Triple Glazing vs. R10 Sheathing

Window-to-Wall Ratio (WWR)

Effective R-value (hr·ft^{2.°}F/Btu)
House before & after improvements Standard Clear Double Glazed U = .65 SHGC = .68 4.0 Ton AC Unit

Double Glazed Low-e, Low SHGC U = .32 SHGC = .32 2.5 Ton AC Unit

A Tale of Two Houses

Condensation Resistance

Healthy Relative Humidity and Windows.

Condensation Resistance

Healthy Relative Humidity and Windows.

A Deeper Look:

Why better windows are suddenly a no-brainer

• Overall effective R value at 12.5% WWR : Triple Pane (U 1.1>) is equivalent to adding more continuous insulation (R5) to a 2x6 wall.

)R

- No learning curve for framer and trades
- Increased condensation resistance for owner(higher interior RH)
- Potential decrease in AC or ASHP tonnage cost
- Annual operating expense decreased by approx. \$200 annually(with both heating and cooling combined)
- Occupant more comfortable in the living room easy chair....

In your experience how much control do you have on orientation, site-scaping & house design?

304

Roof Systems

What does a roof system need?

- Protection from rain penetration
- Drainage
- Flashing
- Durability
- Ventilation (always needed?)
- Proper insulation levels

Sound like our wall systems?

Hipped roof details make insulating difficult

Ice Damn formation

Ventilated attics need good design

Vaulted Roofs: With ventilation & rigid insulation

314

Attic Ventilation Strategies

Ceiling height changes

© Building Science Press. Reprinted with permission.

Airsealing at wall to roof interface

Conditioning the Indoors

Heating, cooling, ventilation and indoor air quality

326

Are we ready for the changes?

Be Aware...

- Energy Efficiency ≠ Comfort
- Builders typically have more comfort complaints than high bill complaints
- If you can't provide comfort, energy efficiency could be set back 20 years
- Need to remember
 comfort fundamentals

Let's Start with Defining Comfort

- Air temperature
- Humidity
- Air speed drafts
- Surrounding surface
 temperatures
- Gender, age, activities of occupants
- Metabolic rate & clothing

ANSI/ASHRAE Standard 55-2010 (Supersedes ANSI/ASHRAE Standard 55-2004) Includes ANSI/ASHRAE addenda listed in Appendix I

Thermal Environmental Conditions for Human Occupancy

See Appendix I for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site (www.ashrae.org) or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from the ASHRAE Web site (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1791 Tullie Circle NE, Atlanta, GA 30329 www.ashrae.org

ISSN 1041-2336

Comfort – Finding the sweet spot

Figure 2: The new Graphic Comfort Zone Method, Figure 5.2.1.1 in Standard 55-2010 (IP version shown).

Operative Temperature

Operative temperature:

- The average of the **mean radiant** and ambient air temperatures, weighted by their respective heat transfer coefficients.
- Thermostats respond to air temperature
- Human thermal comfort responds to operative temperature

Can we meet the expectations of our customers?

Residential Single-Zone and Multi-Zone Systems Minimum / Maximum Recommended Values for Comfort and Safety			
Comfort Item	Heating Season	Cooling Season	
Thermostat setpoint (design)	70°F	75°F	
Relative humidity (RH) ¹	30% RH maximum (20 – 30% RH is desirable)	55% RH maximum (25 – 50% RH is desirable)	
Dry-bulb temperature at the thermostat	Setpoint temperature ±2°F	Setpoint temperature ±3°F (single-zone) Setpoint temperature ±2°F (multi-zone)	
Dry-bulb temperature in any conditioned room	Setpoint temperature ±2°F	Setpoint temperature ±3°F (single-zone) Setpoint temperature ±2°F (multi-zone)	
Room-to-room temperature differences (i.e., same level)	4°F maximum	6°F maximum (single-zone) 4°F maximum (multi-zone)	
Floor-to-floor temperature differences (i.e., different levels)	4°F maximum	6°F maximum (single-zone) 4°F maximum (multi-zone)	
Floor temperature (slab floors or floors over unconditioned space)	65°F minimum at 4" above the floor for 70°F thermostat setting [not applicable near outside walls]		
Air filtration - MINIMUM EFFECTIVENESS ²	MERV ³ rating of 4 – 6 [Standard disposable media filter]	MERV ³ rating of 4 – 6 [Standard disposable media filter]	
Air filtration - BETTER EFFECTIVENESS ²	MERV ³ rating of 8 – 11 [1-2" residential pleated filter]	MERV ³ rating of 8 – 11 [1-2" residential pleated filter]	
Ventilation (outdoor air introduced into the occupied space)	0.35 air changes per hour (ACH) [for any infiltration-ventilation combination]	0.35 air changes per hour (ACH) [for any infiltration-ventilation combination]	
Air circulation within room ⁴	Size and location of supply outlets selected for optimum heating performance / low resistance return path required for every room	Size and location of supply outlets selected for optimum cooling performance / low resistance return path required for every room	

ACCA Comfort Guidelines

Comfort – A starting point

Parameter	Setting	Range
Temperature		
Summer	75 ⁰ F	+/- 3 ⁰ F
Winter	72 ⁰ F	+/- 3 ⁰ F
Humidity		
Summer	50%	+/- 5%
Winter	35%	+/- 5%
Foot Comfort	63 ⁰ F	+/- 3 ⁰ F

Heating & Cooling Systems

Fuel choices

- Electric
- Gas
- Oil
- Wood
- Solar
- Combinations

Distribution choices

- Central Forced air
- Radiant
 - In-floor
 - Baseboard
- Ductless
- Space heaters

Get heating Cooling Capacity right

Residential Load Calculation Hank Rutkowski, P.E.

MANUAL

ACCA Sizing Standards

Heat Flow Formulas

Conduction heat flow (through walls, ceilings, floors)

= (Surface Area x Temp. Diff.) / R-value

Radiant flow (through glass)

= Surface area x Solar incidence x Solar Heat Gain Coefficient

Heat flow by air (via air leakage or ventilation)

= Volume of air (CFM) x Temp. Diff. x 1.1

HEATING – Get the Size Right

 Do Room-by-Room heat loss & gain calculation

Based on:

- Design Day Winter
- Conduction losses through enclosure
- Air leakage through enclosure
- Heat losses through ducts
 in unconditioned space

SECOND FLOOR PLAN

Minneapolis, MN - design conditions

338

Condition	ASHRAE 99% / 1%
Winter, design dry bulb (F)	-15°F
Summer, design dry bulb (F)	91°F
Summer, design wet bulb (F)	71.6°F
Degree days-heating	7981
Degree days-cooling	682
Precipitation	28"
Solar incidence - South, July	

Proper Manual J Calculations

- Numerous software packages exist
- All rely on proper data input and appropriate assumptions

Common Errors:

- Fudging design day conditions
- Using default values for air tightness, windows, insulation
- Using improper ventilation rates

Don't tolerate oversizing, Manual J compliant programs have safety factors built in already

Impact of Improper Sizing

Building Analysis Job wrightsoft Date Entire House By: Plan: Gardner Mirrored North Project Information For Design Conditions Location: Heating Cooling Indoor: Richmond International AP, VA, US 75 Indoor temperature ("F) 70 Design TD ('F) Relative humidity (%) Moisture difference (gr/lb) Elevation 164 ft 49 38"N 30 50 41.3 Latitude: Cooling Heating Outdoor: 921975 Drybulb ("F) 21 Infiltration: Dailyrange (*F) IM I Simplified. Method Wetbulb (*F) Tight 1 (Average) Construction quality Wind apeed (mph) 15.0 Fireplaces Heating BUILT % of kad Component Bally 28.4 20.8 Walle 3.9 9120 162 5676 744 Glazing Doors 2.3 2194 3867 4094 6.8 121 128 Ceilings 13 Floors Inditration 1.8 2438 7.6 Ducts Piping Humidification Ventilation 2958 52 Adjustments 106.0 32091 Total Cooling % of load **Bluh**州 Component Bluh 22.9 37.3 2.0 10.8 22 Walls 4998 8150 445 Glazing 10.6 DOOTS 2359 1.4 Ceilings 2.6 Floors 0 0 0.2 586 infiltration 2190 10.0 Ducts Ventilation 1040 4.8 2120 9.7 internal gains Blower 0 D Adjustments 0 21868 100.0 Total Latent Cooling Load = 3551 Bluin Overall U-value = 0.074 Btuh/#1-*F Data entries checked.

- Short cycling
- Poor humidity control
- Poor temperature control
- Noise
- Extra cost for equipment & duct work
- Possibly higher energy bills

Heating Loads- HP Home Versus Standard

Cooling Loads- HP Home Versus Standard

Provide your Contractor with Good Information

- Insulation levels
 - Wall and attic insulation levels
 - Foundation insulation
- Window data use NFRC ratings
 - Solar heat gain coefficients
 - U values
- House Air leakage (this is often the single biggest variable)
 - Provide blower door test values

Approved Software Guides Better Inputs

le Edit Yiew Show Di	wing Proposal Options Window Library Help	Edx
	Constructions for Test House EEBA HVAC, 4-20-16 <none></none>	X
	Select from library (none)	
et wizerd	Description 2 glazing, clr outr, air gas, vnl frm mat, clr innr, 1/4" gap, 1/4" thk Use Custom values Custom	utr, air
preview	Without storm With storm window U-value 0.570 0570 Btuh/f8-*F SHGC 0.56 0.56 0.56 Not Availab	e 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Design	OK Cance Help	

2) Select the right equipment

Air Conditioners | Heat Pump | Mini Splits | Condenser | Geothermal | Boiler | Furnace

ACCA Equipment Selection

Good System Selection

- Use manufacturer's technical manuals to match:
 - Required heat output
 - Required cooling output
 - Sensible & latent (moisture) loads
 - Fan / airflow delivery capacity and static pressure

Preferred furnace choices

- Sealed combustion chamber
- Venting system decoupled from house pressures
- Efficiencies of 90%+
- High efficiency blower motors
 ECM
- Two/multi stage heating

Preferred AC choices

- Outdoor condenser matched to indoor coil
- SEER ratings of 14+
- High efficiency blower motors - ECM
- Two stage cooling
- Dehumidification cycles
- Inverter for simple connection to solar

New Realities in HVAC Design & Performance

High Performance homes need more efficient motors!

- Capable of meeting small loads, part loads and full loads!
- Use1/5 of original PSC motor types.
- Run efficiently at a variety of speeds (Modulation)
- Equipment lasts longer
- Enables balanced temperatures throughout home
- Enhances Ventilation "Effectiveness"

What about Heat Pumps?

- Is it the first thing to do?
- Reliance on electric grid
- Can do water or air
- High Performance homes
 help reduce capital cost

Energy Efficiency

- Heat pumps are hard to overlook
- Low ambient temperature units: COPs of 2 to 4
- Be mindful of HSPF rating points and operating conditions – cold weather:
- Zone 5+ + 8.6 HSPF+
- Dual Fuel /Auxillary back up as gas vs electric.

Example of a different strategy

- Ductless opportunities
- Provides zoning
- Can target specific high load areas
- In very high performance homes, it could provide all heating & cooling needs

3) Design the ducts correctly

Systems and Applications | Blowers and Air-side Devices | Sizing Calculators | Efficiency, Leakage and Noise

ACCA Duct Design

Manual D provides a duct sizing schedule to deliver the air to the space intended

HVAC by Design

•Properly size system

•Optimize duct layout

Advanced

Ducts & equipment in conditioned space

A closet & dropped ceiling

Use direct vent equipment

Ducts in conditioned space will be cooler in summer, warmer in winter

Place the ducts in conditioned space

A dropped ceiling in the hallway can be effective

STAR YORANS

Ducts are now properly insulated and any duct leakage is to the interior

Properly sized and located grilles "throw" air to the perimeter windows and walls

Conditioned attics are an option

Open web floor joist systems

Layout your floors to accommodate duct

Buried Ducts are an Option

Sealing Ducts Matters!!!

- Getting air where you need it
- Allowing balancing & seasonal adjustment to work
- Empowers zoning to work

Seal Ducts

Mastic with a brush is quickest & best

Low Load Homes suffer from lack of air flow-THROW and MIXING! (Not lack of Returns)

HEATING 350 FPM S=SUPPLY R=RETURN

FLOOR REGISTERS AT PERIMETER

350 FPM S=SUPPLY R=RETURN

COOLING

FLOOR REGISTERS AT PERIMETER

Choose Proper Diffusers with Velocity and "Throw" in Mind

Zoning will become more important

- Matching seasonal load adjustments
- Example basements
- Accurate delivery of part loads

 Making best use of equipment capacity

Ducted Returns will become expected

• A good choice is to hard duct returns...strategically to a centralized location

Return Air Paths

Graphics Courtesy of Building Science Corp.

A single return requires transfer grilles to provide a return path, and avoid pressurizing bedrooms

Note: not an IECC requirement

Combination Systems

Fully Insulated Cabinet – Lowers operating sound.

High-Efficiency Hot Water Coil – Provides exceptional heat transfer and efficient operation.

Electronic Control – Automatically controls unit's operation.

Heavy-Gauge Steel Cabinet – Offers long-lasting reliability with a durable, baked-on enamel finish.

Variable Speed Blower Motor – Designed for comfort and efficiency while minimizing sound.

Multi-Position Design – Allows greater installation flexibility.

Hot water air handler

Condensing Water Heater

Controls

Verification / Commissioning

Testing for performance

Simple Testing Can Help

- Verify performance before the Design Day
- 3-4 measurements
- Matched to the design
- Matched to manufacturer's specifications

1) Duct pressures

2) Airflow at Air Handler

3) Airflow at Registers

4) Refrigerate Verification

5) Temperature rises

Valuable Resources

ENERGY STAR Certified Homes, Version 3 (Rev. 07) HVAC System Quality Installation Contractor Checklist ¹

		Builder Verified 5	Cont. Verified ⁶	N/A
 Heating & Cooling System Design ^{4,8} - Parameters used in the de temperatures, home orientation, number of bedrooms, conditioned floor are infiltration rate, mechanical ventilation rate, presence of MERV6 or better filt 	sign calculations shall reflect home to a, window area, predominant window p er, and indoor temperature setpoints =	be built, specifical erformance and i 70° F for heating;	ly, outdoor des nsulation level 75°F for cooli	sign Is, ng.
2.1 Heat Loss / Gain Method:	Other:			-
2.2 Duct Design Method:	Other:			
2.3 Equipment Selection Method:] Other:			
2.4 Outdoor Design Temperatures: ⁹ Location: 1%:	°F 99%: °F			
2.5 Orientation of Rated Home (e.g., North, South):				-
2.6 Number of Occupants Served by System: 10				-
2.7 Conditioned Floor Area in Rated Home:	Sq. Ft.			-
2.8 Window Area in Rated Home:	Sq. Ft.			-
2.9 Predominant Window SHGC in Rated Home: 11				-
2.10 Infiltration Rate in Rated Home: ¹² Summer:	Winter:			1.2.
2.11 Mechanical Ventilation Rate in Rated Home:	CFM			
2.12 Design Latent Heat Gain:	BTUh			-
2.13 Design Sensible Heat Gain:	BTUh			-
2.14 Design Total Heat Gain:	BTUh			
2.15 Design Total Heat Loss:	BTUh			-
2.16 Design Airflow: 13	CFM			~
2.17 Design Duct Static Pressure: 14	In. Water Colum	in 🗆		
2.18 Full Load Calculations Report Attached 15				•

Hot Water

Hot Water Usage Relevance

- Hot water use is still on its way up
- Wait times are an issue
 - Waste of water
 - Perception of energy waste

Main uses for household hot water

Source: Canadian Building Energy End-Use Data and Analysis Centre

ZERH DOMESTIC HOT WATER IS A BIG DEAL

Occupants Loads 67.5%

 In ZERH'S DHW is tied with space heating as the 2nd largest load

Heating 13%

Hot Water 12.5%

Occupant /Baseload 67.5%

Air Conditioning 3%

HRV /Fans 4%

Regulations have changed

Minimum 2016 Requirements		Example EF
Gas	Storage: <55 us gal. EF = 0.675 – (gal x 0.0015) >55 us gal. EF = 0.8012 – (gal x 0.00078) Tankless: EF = 0.82–(gal x 0.0019)	40 US gal = 0.62 60 US gal = 0.75 Typical = 0.80
Oil	EF = 0.68-(gal. x 0.0019)	50 gal = 0.585
Electric	<55 gal. EF = 0.960-(gal x 0.0003) >55 gal. EF = 2.057-(gal x 0.00113)	40 gal = 0.95 60 gal = 1.98

What's the Right Choice?

- Fuel access?
- Number of people?
- Patterns of use?
- Space / location limits
- Climate zone?
- Efficiency of the home
- Other mechanicals?
- Expectations of clients?
- Other?

Water Heaters

Traditional Tank EF < 0.60

Tankless = +0.80

Condensing water heater =0.86

Tankless Water Heaters

Strengths

- Low stand-by losses
- EFs from 0.80 to high 0.90's possible
- Wall installation frees up floor space
- Continuous supply of hot water
- Great flexibility
 - Point of use temperature controls
 - Locate supplementary units near point of use
 - Combo space & water heating capabilities
- Safe operation with direct venting
- New technologies reduce wait times recirc. and internal storage tanks

Heat Pump Water Heaters

Strengths

- Very high EFs 2.30+ possible
- Similar foot print as existing storage
- Provides cooling & dehumidification to the space
- Electric back-up
- Particularly useful in "Net zeroenergy" homes to complement solar thermal & solar PV.

Solar Thermal Water Heaters

- A great preheat strategy for tankless, storage water heaters & HPWHs – increases their capacity
- 50-60% of annual hot water needs are easily provided
- Excess hot water can be used to heat swimming pools
- Requires freeze protection & annual maintenance

IAQ & Ventilation

Indoor Air Quality is Important to our Clients

20% of households have someone with asthma, allergies or respiratory problems ...poor IAQ may cost 10's of billions annually in lost productivity

Air cleaners are a \$1.2 Billion industry

EPA

IAQ...Why is it a bigger issue than ever?

Change in the <u>way we build</u> -Tighter -More chemicals -Air conditioning

Change in the way we live

-90% of time indoors-Don't open windows-More moisture

Change in **products we use**

-Carpets & furnishings -Cleaners & hygiene -More "stuff" inside

1. Remove Pollutants

2. Source control

- "Seal" or Isolate
- If you can't remove it find a way to isolate or seal it

3. Ventilate

- Dilute pollutants with "fresh" outdoor air
- Point source removal
- 4. Filter

IAQ Control Strategies

Ventilation - a system or means of providing fresh air. Webster New Collegiate Dictionary

We used to ventilate with windows, now we don't

All homes need Capacity for Mechanical Ventilation

- To control moisture
- To remove common pollutants
- To ensure good indoor air quality for occupants

How Much Ventilation? ASHRAE 62.2 - 2013

Whole House - Continuous "Capacity"

Based on # of occupants & size of home

 $CFM = (\# of bedrooms + 1) \times 7.5 + (0.03 \times cond. ft^2)$

Floor Area Sq. ft	# of Bedrooms		
	1	2-3	4-5
<1500	60	75	90
1501 - 2500	90	105	120
2501 - 3500	120	135	150
3501 - 5000	165	180	195

OR USE THE TABLE

Controls moisture and common occupant pollutants

Local Exhaust Ventilation

ASHRAE 62.2 Minimum Exhaust Flow Rate

	Continuous	Intermittent
Kitchen	60 CFM	100 CFM
Bathroom	20 CFM	50 CFM

HVI Kitchen Range Exhaust Flow Rate			
Location of Range	Recommended per Linear Ft of Range	Minimum per Linear Ft of Range	
Against a Wall	100 CFM	40 CFM	
In an Island	150 CFM	50 CFM	

For Gas Ranges recommend 100 CFM / 10,000 BTUs of burner capacity

Types of Mechanical Ventilation

Graphic courtesy of Building Science Corporation

Exhaust

Supply

Balanced

0,1900

Criste N

Ventilation Opportunities

Rated, Tested, Labeled Product

- Always use HVI Certified fans
- Choose ENERGY STAR Qualified Fan and HRVs

Exhaust Only Ventilation

- Specify good quiet fans in bathrooms and kitchen
- Bath fans with sound ratings under 1.5 sones
- Can be used for point source control or general ventilation
- Use timers or other controls to extend usage
- Recall that large exhaust fans can cause negative pressure

421

Control Strategies for "Continuous" Exhaust

Fan manufacturers have many new, helpful control strategies

- Continuous Low
- High speed occupancy
- Cycle timed

Balanced ventilation with heat or energy recovery

- Remote mounted multiple room pick-up and delivery
- Draw from the common area and supply to all bedrooms
- Central fan integration is also used

Copyright Building Science Corporation 2006

Installation Options

- There are different options for installation depending on application needs
- Often the furnace duct system is used to distribute fresh air
- When possible, run exhaust ducts from bathrooms & kitchens

Balanced Ventilation with Heat Recovery

- HRVs / ERVs for continuous ventilation
- Choose Home Ventilating
 Institute (HVI) certified
- Select units with the right air flow.

Ventilation & High Performance Homes

Ventilation is an important part of the House as a System

- Allows for houses to be built tighter
- Provides interior moisture and pollutant control

Ventilation will impact other HVAC systems

- Impact on HVAC load calculations
- Impact on moisture balance
- Impact on house pressures
- Impact on control strategies

HVAC Sizing

Air leakage / ventilation heat loss

- = CFM x temp. difference x 1.1
- = 60 x 100 x 1.1= 6600 BTUs/hr

The Lungs of the Home

HRVs / ERVs - Balancing Flows

431

HRV's - ERV's what's the difference?

Heat Recovery Ventilation

• Allows transfer of sensible heat or temperature difference

Poly or Aluminum Core

Energy Recovery Ventilation

- Allows both sensible and latent transfer
- Moisture transfer
 - Reduces cooling loads in humid climates
 - Avoids over-drying in winter

Permeable Core

The Cost of Ventilation – 75 CFM continuous

Electric costs Gas heat costs	\$0.06 / kW \$1.20 / Therm	\$0.12 / kW \$1.20 / Therm	\$0.18 / kW \$1.20 / Therm
North (Duluth, MN)	\$225/yr	\$260/yr	\$290/yr
Mixed (Louisville, KY)	\$145/yr	\$195/y	\$240/yr
Hot, Humid (Miami, FI)	\$ 125/yr	\$195/yr	\$285/yr

The Savings of Balanced Heat Recovery Ventilation

Proper ventilation enables tighter homes This can save:

- \$200 \$250 /yr in the north
- \$125 \$175 /yr in mixed climates
- \$75 \$125 /yr in southern climates
- ECM motors on air handlers, fans and ERVs can help save even more

Ventilation Impact on combustion appliances Testing for depressurization

- Specific concern with natural draft appliances; wood burning fireplaces, gas log sets
- Tight houses with large exhausts can cause negative pressure
- Chimneys can overcome -5 Pa (-0.02"w.g.) pressure
- Test and provide make-up air if required

What about make-up air?

Over 400 CFM ??

The importance of Dehumidification

Sensible loads are down:

- Better windows
- Better walls
- Better ceilings

Latent loads are up:

- More time indoors
- More plumbing
- More consistent ventilation

HVAC design must include dehumidification, to supplement air conditioning

Humidification Applications

- Winter in cold climates
- Large homes with low occupancy levels

Sizing:

- Required capacity is a function of:
 - Air tightness of the home
 - Ventilation strategies
 - Occupancy generation

Filtration

Filtration

Filtration is the 4th of IAQ strategies: Remove, Seal, Ventilate, then Filter

- Filtration at the furnace works and is cost effective
- Commonly located in the return duct of the air handler
- Choose a filter with a rating of MERV 10 or better
- The better the filter, the more it restricts air flow, understand the appliance needs

Filtration Options

HEPA Filters

- Work to eliminate pollutant sources before spending money on HEPA
- MERV 16-20
- Very restrictive on airflow, they need their own fan system
- Available in ducted or units

Mechanical Systems

HVAC

- Heating
- Ventilation (something new?)
- Part of the indoor Air Quality Conversation
- Air Conditioning
- Fireplaces
- Lighting and Appliances
- Humidification & Dehumidification

Heating & Cooling Systems Summary

- Ensure combustion safety
- Get equipment and duct sizes right
- Make good equipment choices
- Get ducts into conditioned spaces
- Get ducts sealed
- Test the performance

Appliances Make a Difference!

453

Appliance energy use and water use is growing

Appliances, Lights & Plug Loads

An EPA water efficiency retrofit study indicated the total water use was reduced to 40 gallons per person per day - 39% reduction

Lighting Efficiency

Water Efficient Fixtures

Faucets < 1.8 GPM Shower heads < 2.0 GPM

Front load washers save 60%

Toilet with < 1.3 Gallons

Renewable Energy Systems

Creating better envelopes

- Include ventilation on every project, performance and rationalize costs
- Choose effective, efficient, quiet fans and appliances
- Challenge your mechanical contractor to participate in your quest improving total system performance

Green Building Programs

SENDIBLY BUILT

Changing your process Where does actual change begin?

463

Who will be responsible for change?

- Select key people
 - Top management
 - Top field staff
 - Key sub-contractors
 - Testing professionals
 - Architects & designers
 - Sales management staff

Creating a plan to move forward

Define the concerns, plan for the solution and set a timeframe

What Now?

Tomorrow

- Evaluate flashing
- Review insulation quality
- Review duct installations
- Test a few homes to establish your basis

Two Weeks

- Review bids for change
- Create internal teams responsible for change
- Set goals for future direction

Create goals and prioritize them by both complexity and risk

Short Term Goals

Timeframe: 1 to 6 months

Construction Detail	Best Practice	Complexity
		(1-Basic, 5-Complex)
Combustion safety		
Atmospherically vented furnace	Sealed combustion furnace	1
Return plenum connected to garage	Seal duct with water-based mastic, like RCD-6	3
"Fresh" air intake connected to garage	Seal all duct seams with water-based mastic and	2
	protect duct with dropped soffit	2
Leaky house/garage wall connection	Continuous air sealing	2
Water Management		
Flashing at Roof/Wall Connections	Kick-out flashing, proper lapping of Tyvek and step flashing	2
	raw wood attached to Hardie w/o priming,	2
Window flashing	Pan flashing, proper installation sequence and integration with Tyvek	4
Penetration flashing	Correct hole sizes, Tyvek Flex Wrap patches, Tyvek lapping detail	2
Flashing attention to detail	Taping seams & tears, proper lapping, ensuring full-coverage	1
Thermal Shell Improvements		
Walls	Ensure insulation is installed properly - must be fulldepth,	2
	no gaps, or compression	2
Attics	Insulation must be installed to consistent depth,	2
	proper sequencing of Framing and Mechanical trades	3
Air Sealing		
Bypasses	Seal large air leaks with combination of proper blocking and gun foam	2
Key leaks	Seal house to garage connection	2

www.ideal-homes.com
THE CONSUMER: ARE THEY REALLY SATISFIED?

"very energy efficient with low monthly utility costs."

Source: The Housing Satisfaction Gap: What People Want but Don't Have, Demand Institute, 2014

THE CONSUMER: THEY KNOW MOST HOUSING IS LESS EFFICIENT

- High Utility Bills
- Poor Comfort
- Health Concerns
- Moisture Issues
- Excessive Bugs/Pests
- Durability Problems
- Obsolete Technology

Meet 85% of Your Competition

Marketing and communicating

Our homes are

11

MAX MAN

more efficient than homes built to state code standards

IN

Communicating to buyers

Our homes are

more efficient than homes built to state code standards

MSSTAIN

THE CONSUMER AND HIGH PERFROMANCE HOMES

HOW TO TALK LIKE A NORMAL PERSON

Fresh Air Machine!

New Town Builders

Lives Better: Healthful Environment

- · Fresh Air:
 - Supply Fresh Air System
 - Odor and Moisture Control Fans
 - High-Capture Filtration Technology
- · Quiet:
 - Quiet Window Technology
 - Quiet Wall Technology
- · Moisture Control:
 - Dry-by-Design Construction
 - Moisture Control System Whole House
 - Moisture Controlled Comfort System
 - Moisture Controlled Windows
 - Moisture Controlled Lower Level
- Pest Control:
 - Bug Control Barrier
 - Pest Screened Home
- Outdoor Contaminant Control:
 - Contaminant Sealed Construction
 - Contaminant Sealed Comfort Delivery
 - Dust and Pollen Barrier
 - Radon Controlled Home
- Chemical Control:
 - Formaldehyde Controlled Home
 - VOC Controlled Home
- Fume Control:
 - Carbon Monoxide Controlled Equipment
 - Carbon Monoxide Controlled Fireplace
 - Fume Controlled Garage

THE CONSUMER AND HIGH PERFROMANCE HOMES

HOW TO TALK LIKE A NORMAL PERSON

THE CONSUMER AND HIGH PERFORMANCE HOMES

The right words make the purchaser feel...

Matching High Performance Features to **Emotion** Translate Technical Features into **Benefits**

DOE Building Science Translator

Tool for Sales and Marketing Professions

www.basc.energy.gov

Tools for improving your business

constructioninstruction.com

Get Started !!

- Develop new standards for performance
- Train your crews and subcontractors
- Reward new ideas to improve a technique
- Demonstrate new features in models
- Market your leadership position
- Document performance improvements
- Solicit customer testimonials

"A small group of thoughtful people could change the world...

Margaret Mead

...Indeed it is the only thing that ever has"

"When we build let us think that we build

forever. Let it not be for present delight nor

present use alone. Let it be such work as our

descendants will thank us for..."

John Ruskin (1819 to 1901)

Thank You

Andrew Oding andy@buildingknowledge.ca Construction Instruction Inc.

www.constructioninstruction.com Download our App free at the iTunes Store or Google Play Store

