Achieving Superior Energy Efficiency

in Commercial and Multi-Family Buildings through Passive House

2019 Duluth Energy Design Conference

Elizabeth TurnerOAIA, CPHCA

Chloe Bendistis AIA, LEED AP BD+C

CONTINUING EDUCATION

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 hours** of credit toward **Building Officials** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

LEARNING OBJECTIVES

- 1. Describe the challenges and benefits of applying PHIUS+ Passive House certification to a commercial and large multi-family project.
- 2. Understand the PHIUS Passive House certification process and timeline.
- 3. Explain the health and wellness benefits of building to the PHIUS+ Passive House Standard.
- 4. Describe how increasing the efficiency of the building envelope can significantly reduce the size, complexity, and cost of HVAC systems.
- 5. Analyze building energy models to inform decisions throughout the design process.
- 6. Understand the role engineers can expect to play in collaboration with passive house consultants and the design team.
- 7. Analyze the financial costs and tradeoffs of building a passive building versus a code compliant building.

PRESENTATION OVERVIEW

Introduction

Overview of Passive House

Case Study #1

Case Study #2

Questions

REAL-TIME POLLING

We invite you to participate with your smart phone! To start, send the following text message.

To: 22333

Message: chloebendist474

You'll receive a response from "Poll Everywhere" confirming your participation.

Your poll will show here

Install the app from pollev.com/app

Make sure you are in Slide Show mode

2

Still not working? Get help at pollev.com/app/help or Open poll in your web browser

GREEN BUILDING TRENDS

- Greater focus on occupant health and well-being
- Improve occupant engagement, productivity, and satisfaction
- Balance energy efficiency with superior indoor environmental quality and comfort

IMPROVED VENTILATION

- Study compared standard office environment with improved indoor conditions
 - VOC contaminants
 - Outdoor air rates
- Superior indoor air quality resulted in improved focus and problem solving abilities

Multivariable test for building types: Conventional Enhanced Green Green Low VOC and Low VOC i.e., Typical Office High Ventilation Single-variable test for carbon dioxide: Low CO, Moderate CO₂ High CO.

PARTICIPANTS

OVER

2 TESTS

DAYS

PARTICIPANTS EXPERIENCED

SIGNIFICANTLY BETTER COGNITIVE FUNCTION

Harvard Center for Health & the Global Environment - 2015

EMISSIONS & HEALTH

- Coal-fired power plants result in harmful emissions and outdoor air pollution
- Hazardous air quality conditions can exacerbate asthma and allergy symptoms
- Childhood asthma is the leading cause of student absenteeism and accounts for 13.8 million missed school days each year

Centers for Disease Control - 2015

Your poll will show here

Install the app from pollev.com/app

Make sure you are in Slide Show mode

2

Still not working? Get help at pollev.com/app/help or Open poll in your web browser

PASSIVE HOUSE OVERVIEW

The Distillery - Boston

PASSIVE HOUSE INSTITUTE US

- Passive House Institute initially founded in 1996 in Germany
- PHIUS established in 2007
- PHIUS+ 2015 released 3/2015
 - Cost-effective passive energy efficiency strategies
 - Cost-optimized by climate zone
 - Software, tools, and support
 - Third-party verification required

Group Design Build – Residence, Cambridge MA

Your poll will show here

Install the app from pollev.com/app

Make sure you are in Slide Show mode

2

Still not working? Get help at pollev.com/app/help or Open poll in your web browser

CLIMATE SPECIFIC TARGETS

Minneapolis, MN Targets

- Heating demand 7.4 kBtu/SFyr
- Cooling Demand 2.31 kBtu/SFyr
- Heating Load 5.4 Btu/hr SF
- Cooling Load 4.2 Btu/hr SF
- Source Energy 6200 kWh/Person yr
- Air Tightness 0.05 cfm50/SF (0.4 ACH50 for this building)

PHIUS+ 2015 PRINCIPLES

High Performance Windows & Doors

Eliminate Thermal Bridges

Optimize Solar Gain

Energy Recovery Ventilation

PHIUS+ 2015 Materials

ENERGY MODELING

- Holistic, iterative analysis tool during design
- Not a "proof model" at the end of design
- Calculate first cost, operating cost, and return on investment

Construction

WUFI Passive

WURI#Passive V.3.1.1.0 50/OneDrive/Precipitate/PROJECTS - P1702 Hook & Ladder/WURI Passive Modeling/HookandLadder1804 - revised DHW values.mwp

File Input Options Database Help

CASE STUDY #1

PROJECT INTRODUCTION

THE GODDARD SCHOOL

- Providing private preschool and daycare for over 30 years
- 65,000 students in more than
 460 schools in 36 states
- 6 weeks to 6 years old
- Comprehensive play-based
 curriculum

BE AMAZING, LLC

- Franchise per corporate design standards
- Family team planning for longterm ownership
- Sustainability Goals
 - Environmental stewardship
 - Occupant health
 - Ongoing operational costs

Don't wait for the "the unicorn client"

Building Green Blog Post "Why We Let Ourselves Do Mediocre Work" by Tristan Roberts

PROJECT OVERVIEW

- Plymouth Meeting, Pennsylvania
- Prototype building plan
- 56,000 square foot lot
- 8,700 square foot building
- 132 students and 32 adults
- Project Team
 - Owner: Be Amazing, LLC
 - Architects: The Sheward Partnership
 - MEP Engineers: Alderson Engineering
 - Contractor: MidAtlantic Construction
 - CPHC: The Sheward Partnership

TIMELINE

	Sep 2015 Feasibility Study		Sep 2016 Bid Set Some sustainal strategies were bid as add alternates	oility e	Oct 2017 Occupancy	Jan 2018 Achieved LEED Gold Certification
2015	2016		2017		2018	
		Jan 2016 Sustainability Goal Setting Charrette Due to Pennsylvania green building grant, targeted LEED Gold and PHIUS+ 2015 certification		Jan 2017 Construction Start Budget constraints resulted in pursuit of LEED Gold certification only		

ENERGY MODELING AS A TOOL

ENVELOPE

<u>Code Baseline</u>		Actual Installation	
Roof Insulation	R-20	Roof Insulation	R-50
Wall Insulation	R-13 + R-7.5 CI	Wall Insulation	R-20 + R-20 CI
Slab Insulation	None	Slab Insulation	R-12 CI
Casement Window	U-0.40	Casement Window	U-0.15
Curtain Wall	U-0.50	Curtain Wall	U-0.39

AIR BARRIER

- Details in construction documents
- Highlight air barrier continuity
- Aid design and construction teams

LIGHTING & DAYLIGHTING

- LED lighting fixtures at 0.55 watts per square foot
- Daylight Harvesting, Dimming and Occupancy Controls
- Glazing Location & Quantity
- Window Treatment

HVAC

- Variable refrigerant flow (VRF) heating and cooling
- Latent and sensible wheel-type energy recovery
- Building automation system

Children breathe larger volumes of air per unit body weight than adults

Environmental Protection Agency

VENTILATION

- Code ventilation rate equivalent for children and adults
- Ventilation is large component of total building energy consumption
- Balance supply and exhaust, ventilation flow rates and maintain proper pressure

SCHEMATIC MODELING

- Schematic design energy modeling results
- Used passive principles to achieve energy goals
- Schematic PHIUS+ model is Net Zero Energy Ready (NZER)

Site Energy Use Intensity (EUI) kBtu / square foot / year

LEED GOLD

- Achieved LEED Gold certification under the LEED for New Construction v2009 Rating System
- Coordination with Goddard design standards
- Focus on health and well-being

INDOOR AIR QUALITY

- Energy recovery resulted in higher quality system than typical for low-rise application
- Passive House principles result in reduced infiltration and exfiltration rates
- Tighter envelope could result in greater indoor air contaminant levels

INDOOR AIR QUALITY (IAQ)

- Low-emitting materials in coordination with Goddard design standards
- Goddard supplies casework direct with no added urea formaldehyde resins

IAQ BEFORE & AFTER

- Construction IAQ Management Plan
- General Contractor completed building flush-out to remove dust and contaminants
- Green Cleaning Policy uses materials and equipment that are less toxic and promote indoor air quality

COMFORT

- ASHRAE 55 addresses temperature, humidity, air movement and radiant temperature
- Lighting and thermal comfort controls for staff
- Daylight and views

LESSONS LEARNED

1.23

* 1 to 2

EXIT

GET SE

BLOWER DOOR TESTING: DURING CONSTRUCTION

• PHIUS+ requires whole-building air tightness test and performance

q50 <= 0.050 CFM₅₀ / SF

- Per square foot of building envelope
- We completed preliminary test before gypsum wallboard to identify major issues
- Preliminary Results: 0.20 CFM50 / SF

BLOWER DOOR TESTING: END OF CONSTRUCTION

• PHIUS+ requires whole-building air tightness test and performance

q50 <= 0.050 CFM₅₀ / SF

- We completed final test before occupancy
- Final Results: 0.070 CFM50 / SF

TIPS FOR SUCCESS

- PHIUS+ provided an established roadmap to superior energy performance versus "testing" 15+ energy conservation measures
- Engage General Contractor early in process
- Review potential lead times of products contributing to Passive House

CASE STUDY #2

HOOK

PROJECT OVERVIEW

- Minneapolis, Minnesota (6A)
- 118 total units Affordable Housing
- One standard and one PHIUS building with same unit mix
- PHIUS Building Metrics
 - Units 59
 iCFA 53,000 SF
 Envelope/iCFA 1.06
 - Occupants 156
 - Density 341 SF/Occupant

WHY PHIUS FOR AFFORDABLE HOUSING?

TIMELINE

		Spring-Summer 2017 Design Development PHIUS+ 2015 chosen as rating system, iterative WUFI Passive models		April 2018 Achieved PHIUS+ 2015 Pre- Certification	
2016	2017		2018		
	Spring 2016 Schematic Design PHI Feasibility Study Targeted PHI due to neighborhood demand and developer interest		Fall 2018 PHIUS Review Begins Three rounds of submissions		August 2018 Construction Start PHIUS Verifier engaged throughout construction process

FEBRUARY 2019 PROGRESS 11 -

TEAM STRUCTURE

STRATEGIES OVERVIEW

INCREASED R-VALUES AND AIR SEALING

SYSTEMS

Roof Insulation	R-55	VRF HVAC System with Centralized Energy Recovery Ventilation (ERV)		
Wall Insulation	R-19 + R-9.6 CI			
Slab Insulation	R-20 CI	All LED Lighting		
		Heat Pump Dryers		
Awning Window	0-0.17, SHGC 0.2	DHW Preheat by VRF		
Fixed Window	U-0.15, SHGC 0.27			
		40 kW Rooftop Solar		

ENERGY TARGETS

ENERGY TARGETS

TOTAL ENERGY DEMAND

DOMESTIC HOT WATER

- Recirculating Loop layout
- VRF used for DHW preheat up to 400 gallons whenever excess heat
- Could alternatively use solar preheat

THERMAL BREAKS

WITHIN THERMAL ENVELOPE

THERMAL BREAK AT TUCK-UNDER PARKING

THERM MODEL

STANDARD BUILDING

PHIUS+2015 BUILDING

image credit:LHB

Somewhat over-ventilated space to avoid high humidity Would have been helpful to oversize distribution ducts (max HP for fans)

DRYERS

- 3 Standard, 6 Heat Pump Condensing Dryers
- Reduced make-up air allowed us to come in under energy targets
- Heat Pump Condensing Dryers aren't yet available for commercial leasing – waiting for future technological advancements

UTILITY DELIVERY STRUCTURE

- Utility Supplied Metering
 - 120 Electric meters
 - 61 Gas meters
 - Residential energy rate
 - 118 units annual utility services charges \$27,289

• Wireless Monitors

- 2 Electric meters
- 2 Gas meters
- Commercial energy rate
- No Utility Service Charges
- \$32,580 in Utility Service Savings

Rent Utilities Utilities Actual Savings

COST COMPARISON

PHIUS Building Unit Cost (Excluding site)

- \$163,750
- +\$140,000 total for solar

Standard Building Unit Cost (Excluding site)

• \$163,995

WHY PHIUS FOR AFFORDABLE HOUSING?

WHY PHIUS FOR AFFORDABLE HOUSING?

PHIUS+2015 REQUIREMENTS

- High-performance building envelope
 - Thermal comfort
 - Moisture control
 - Durability
- Fresh air requirements
 - Direct bedroom supply
 - MERV 8 (MERV 12)
 - Limited exposure to combustion gas
- · DHW design

OCCUPANT BENEFITS

- · Resilience
 - extreme weather
 - power outages
 - housing cost uncertainty
- Remediation of environmental pollution
- Increased occupant comfort
- Increased occupant health
 - reduction in
 - mold, bacteria,
 - dust, pests
 - cardiovascular
 - stress

COMMUNIT BENEFITS

- Lower turnover
 = connection to
 community
- Resilience
- Proactive care for vulnerable populations
- Economics
- Emissions
- Prototype

OWNER BENEFITS

- Funding opportunities
- Reduced maintenance/ operation costs

 utilities
 - envelope
 - durability (3rd party verified)
 - lower turnover

For more information on some benefits, see Norton, Ruth Ann, Brendan Wade Brown, Kiki Malomo-Paris, and Elizabeth Stubblefield-Loucks. "Non-Energy Benefits of Energy Efficiency and Weatherization Programs in Multifamily Housing: The Clean Power Plan and Policy Implications." *Green & Healthy Homes Initiative*, September 2016.

TIPS FOR SUCCESS

- Meet early and often with the team, and have MEP charrettes directly with CPHC
- Determine who is gathering performance data from manufacturers
- Use WUFI Passive model for its intended purpose – certification & envelope optimization
- Submit requests for Technical Committee Review for innovative system design
- Avoid excessive SF/person
- Consider which rooms are 'inside building envelope'
- A PV system will likely be necessary in multifamily housing to meet per-person source energy targets

Group Design Build – Residence, Cambridge MA

Your poll will show here

Install the app from pollev.com/app

Make sure you are in Slide Show mode

2

Still not working? Get help at pollev.com/app/help or Open poll in your web browser Thank you!

Precipitate ARCHITECTURE PLANNING RESEARCH

Elizabeth Turner elizabeth@precipitatearch.com

Chloe Bendistis ckb@tsparch.com

2019 Duluth Energy Design Conference

