

conference & expo

High Performance Glazing

Technologies, Applications & Resulting Performance

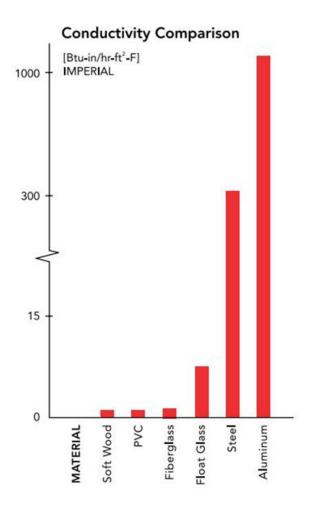
Presented by AI Dueck, DUXTON Windows & Doors

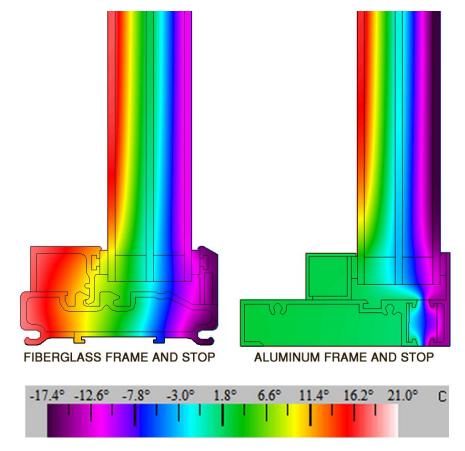
In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1 hour** of credit toward **Building Officials and Residential Contractors code /1 hour energy** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

- Breakdown of high performance window components
- Meeting performance in large window assemblies
- Trade-offs of new glazing options
 - Quads, multi-film units, vacuum insulated
- Project examples


High Performance Window Components


- ✓ Non-conductive insulated frame
- ✓ Strength achieved with minimal steel reinforcing
- ✓ Low-e coatings, with solar gain design
- ✓ Air/argon/krypton gas fill
- ✓ Optimized air spaces
- ✓ Multiple cavities
- ✓ Air tightness while having fresh air access

Non-Conductive Insulated Frame

Both simulated with a Tri-pane 2 Low-E Silver Coatings (2&5), Argon, Warm Edge Spacer

Non-Conductive Insulated Frame

Pultruded Fiberglass

The process begins with raw strands of glass

The lineal frame fibres are pulled is made to specified profiles

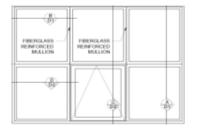
A choice of colours

can be applied to the frames

Glass rovings and matting before "collection"

Mechanical puller pulling glass content through die with resin matrix

Resin-soaked


through forms

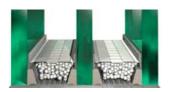
Strength Achieved with Minimal Steel

Sample Window: 8'x6'

Series	Cross Section	Performance Grade
328 or 3 1/4"		LC 40
458 or 4 5/8"		LC 55 (or CW 35)
658 or 6 5/8"		CW 60

Strength Achieved with Minimal Steel

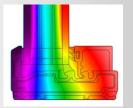
Series	Application
328 or 3 1/4" Approx. 5x4'	
458 or 4 5/8" Approx. 6x8'	
658 or 6 5/8" Approx. 80x12'	

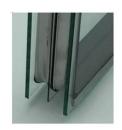


Air, Argon, Krypton Gas Fill

	3-Pane LoĒ ^{2®} -272 #2 & LoĒ-180 #5							
	U-Values (Btu/hr/ft²/°F)/							
	Center of Glass Temperatures							
Spacer	Air/U	Temp.	Argon/U	Temp.	Kr/U	Temp.		
6.5mm	0.248	55.9	0.194	58.7	0.130	62.2		
7.0mm	0.236	56.5	0.184	59.3	0.124	62.5		
7.5mm	0.225	57.1	0.175	59.7	0.120	62.8		
8.0mm	0.215	57.6	0.168	60.1	0.116	63.0		
9.8mm	0.188	59.1	0.147	61.3	0.113	63.2		
11.2mm	0.173	59.9	0.136	61.9	0.115	63.0		
11.5mm	0.171	60.0	0.134	62.0	0.115	63.0		
12.2mm	0.165	60.3	0.131	62.2	0.116	63.0		
13.0mm	0.161	60.5	0.129	62.3	0.118	62.9		

Meaning:


- 1 3/8" overall for best performance in argon
- Krypton offers further insulating value with narrower air spaces
- Thicker glass reduces performance in the same OD


Multiple Cavities

Value Considerations

				Centre-	of-Glas	S	Overall Window	Prici	ng (USD)	
Glass type	Gas	OD	R- Value	U- Value	Heat Gain	Visible Light	U-Value (imperial)	Gla	ss \$/sq. ft.	Limited Warranty
Dual Pane										
1 Low-E, mid-range heat gain	Argon	1 3/8"	4.00	0.25	0.41	72%	0.27	\$	8.08	20 years
Triple Pane										
2 Low-Es, mid-range heat gain	Argon	1 3/8"	7.69	0.13	0.37	63%	0.16	\$	16.61	20 years
Thin Glass Quads										
2 Low-Es, mid-range heat gain	Krypton	1 3/8"	10.00	0.10	0.35	58%	0.12	\$	33.94	10 years
Suspended Film							*Estimated			
4 layers of film	Air	4.41"	12.00	0.08	0.26	43%	0.10	\$	58.91	25 years
Vacuum Insulated Sealed Unit							*Estimated	*Es	timated	
VIG assembled into SU, low heat	Air	0.96"	14.10	0.07	0.27	54%	0.09	\$	50.00	N/A
gain										
Notes: Simulations based on 4 mm pane thickness. NFRC conditions.										

Conventional triple

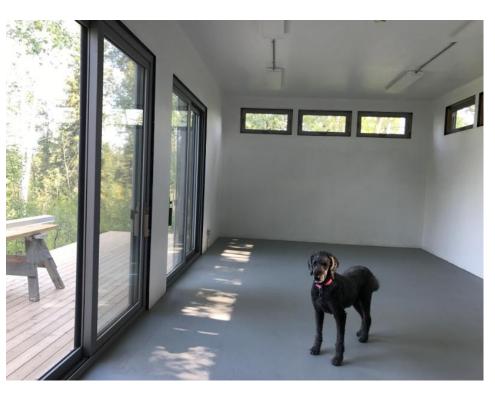
Thin glass

Multi-film

Exterior Exterior For a set of the set o

Vacuum Insulated Unit

Air Tightness with having Fresh Air Access


Virtually all operable windows creates LOTS of cooling air flow

Slim Sash

Extensive use of venting fenestration allows for a naturally cooled interior

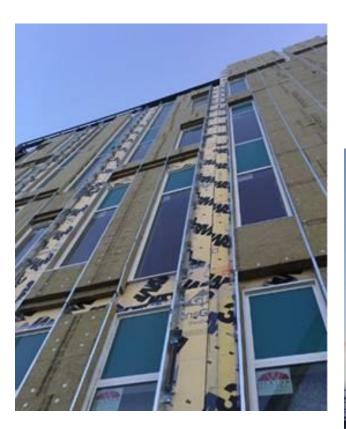
Project Examples

Largest Passive Housing in British Columbia

- LARGE outward opening awnings with multi point locks
- Triple glazing with double low e/krypton
- "Mid wall" installation with clips

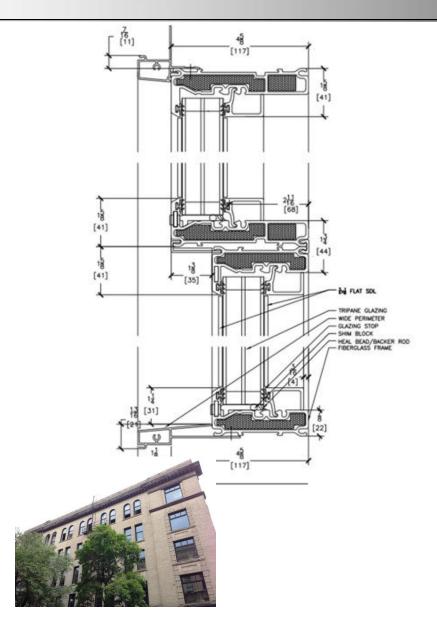
Adapting High Performance systems Light Commercial Retrofit in Wisconsin

More practical installation/interior glazing


Adapting High Performance systems University Residence with Insulated/Venting Louvers

Pre-fab panel/installed windows assembly in Northern Canada

Pre "orchestrated" installation Detailing and site handling



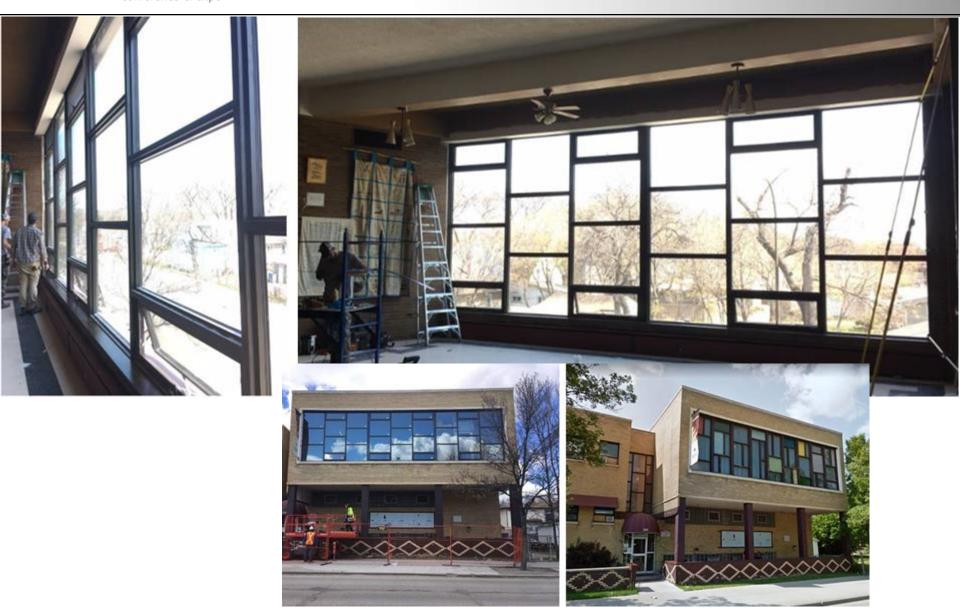
Single/Double Hung Replacement for Historic Buildings/Winnipeg

Floor to Ceiling combinations in South Minnesota Residence

Sliding doors, FiberWall fixed and outward venting units



Adapted for installation in recycled Shipping Containers

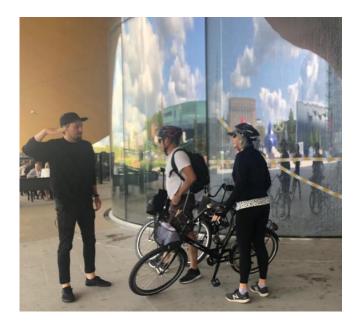

Sliding doors, FiberWall fixed and sliding venting units

FRP WindowWall with outward opening fresh air access

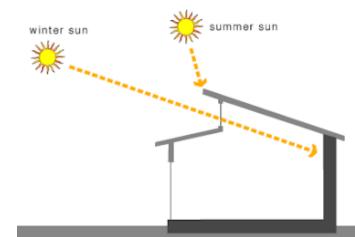
Educational Institutions with Security Screens

- Much "cleaner" glass protection
- Less "jail like" in perception
- Cleaning access possible

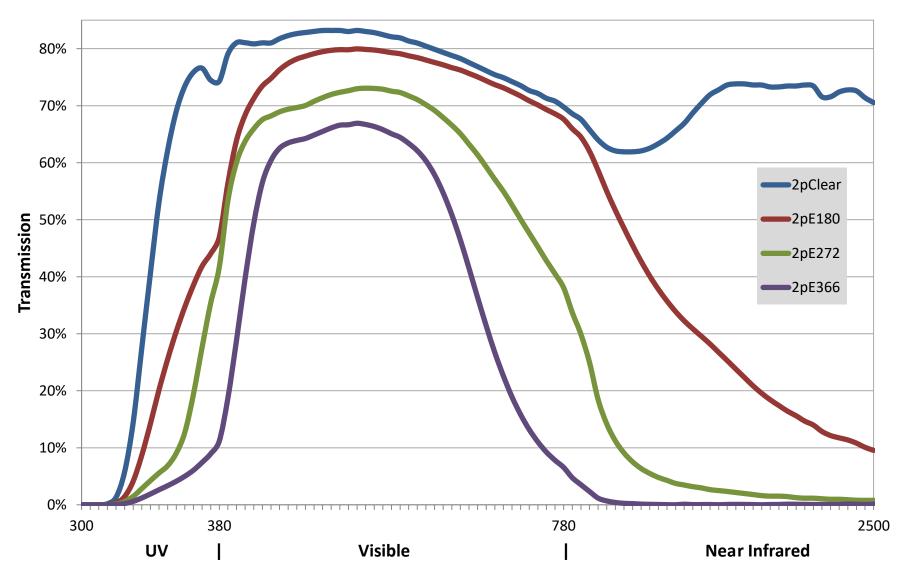
Learning from our VERY Small World Cycling in Copenhagen



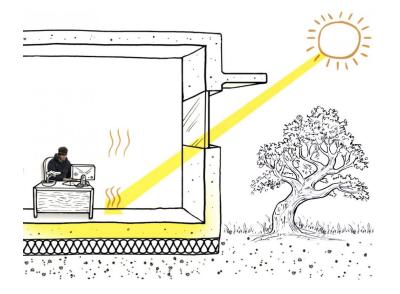
Learning from our VERY Small World Cycling in Helsinki : New "library"



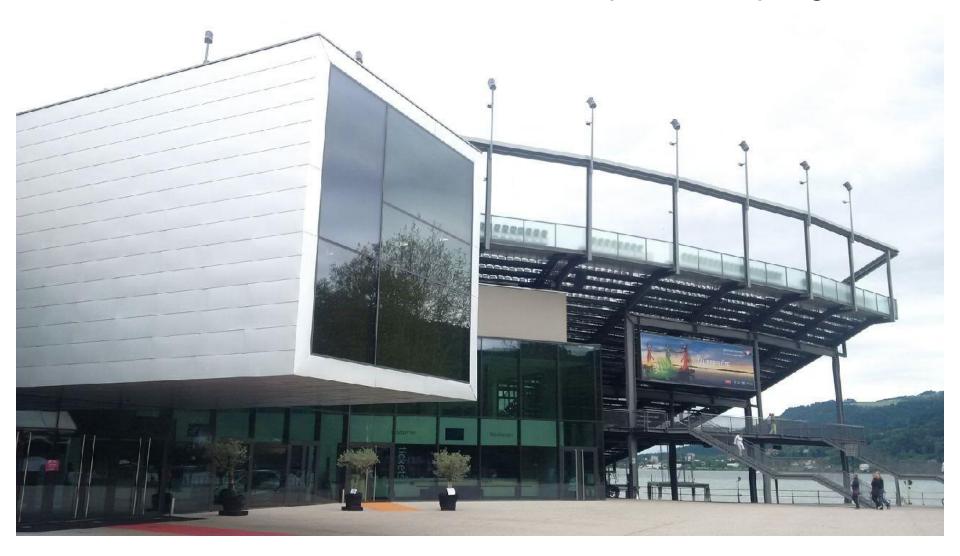
Solar "Optimization"



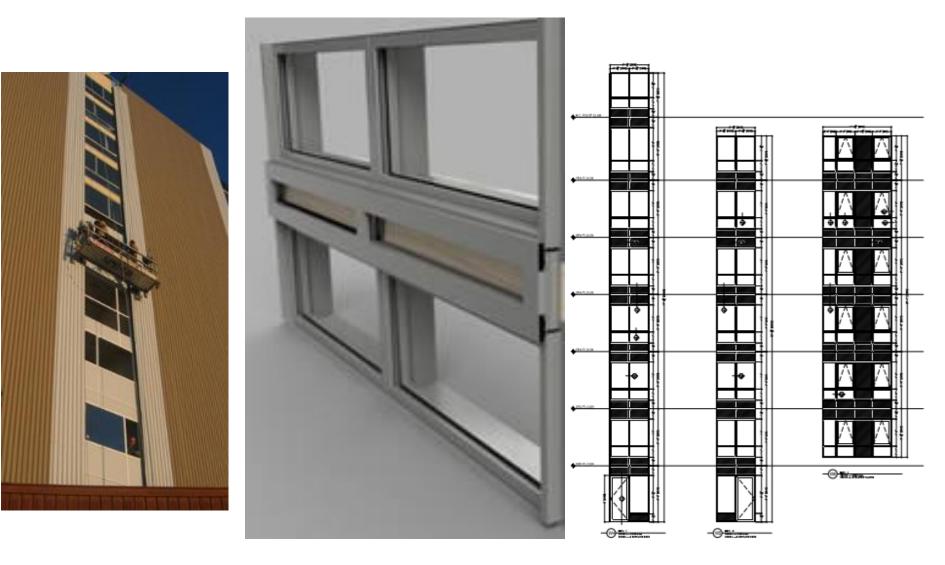
Form | Function | Flexibility



Spectrally Selective LoĒ Coatings <u>% Transmission per Wavelength</u>



- Windows in the U.S. consume 30% building heating and cooling energy
- Focus on the building envelope 1st heating & cooling 2nd
- Windows can be "net energy gainers" with passive solar design


2014 Austrian Opera Center South Central Europe with Triple glass

Strip window Installation Options

Left: 10 yr old installation Wpg Mid: Fire Rated Resin System Right: Strip Install

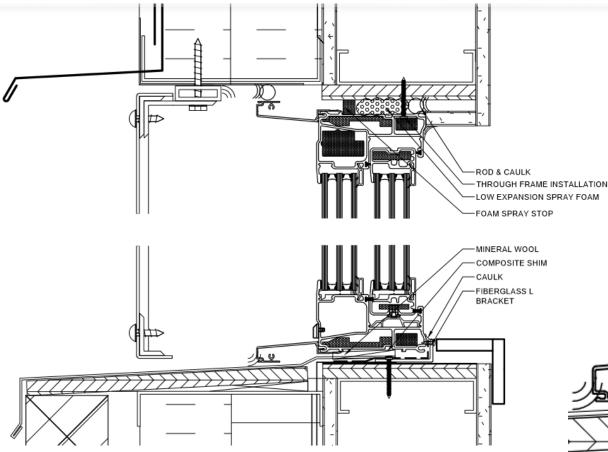
Educational with Security Screens

Options including much more subtle glass protection screens

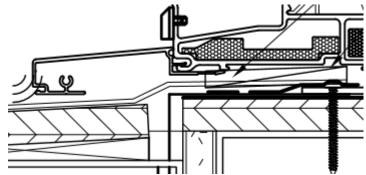
School Fenestration Hopper Option Tilt n' Turn

- European style, inward opening
- Triple option, TIGHTER seal
- Opens for venting or entry

School Fenestration Hopper Option Tilt n' Turn



Cold Climate, Rain Screen Install Detail


Properly prepared/sealed rough opening protects building envelope while exterior gaps allow drainage to exterior/ opportunity for drying to take place. Rocksul insulation on sill and low expansion foam on sides and top.

Fiberglass L bracket on interior provides 1" tall barrier to water entry with silicone seal

250 Pan accessory overlaps sill flashing under window

conference & expo

Thank You

Questions?

National Building Code

Energy Code Benchmarks

City	Zone	Prescriptive Max U-Value W/m ² K (imperial/btu)
Commercial: MB (2011)	7A	2.00 (0.35)
Commercial: AB/SK (2015/2017)	7A	2.20 (0.39) to 1.90 (0.33)

Centre of Glass (COG) vs. Overall U-value

Glazing	Centre of Glass	Aluminum No Thermal Break	Aluminum Thermal Break	PVC/ FG Picture	PVC/ FG Slider
Dual Clear	2.65	4.85	3.10	2.50	2,50
Dual Low-E Hard Coat	1.60	4.00	1.90	1.70	1.9
Dual Low-E Soft Coat	1.35	3. 10	1.85	1.60	1.65
Tri Low-E Hard Coat	1.00	3.6:	1.40	1.35	1.80
Tri Low-E 2*Soft Coat	0.85	3.60	1.05	0.95	1.36

Overall U-Values

How does a 3 mm triple compare to a 5/6 mm triple?

Product	Glazing	Uwindow [W/m^2*K]	Uwindow [btu/h*ft^2*F]	
FiberWall 328 Fixed	3mm/366/Arg90/3mm/Arg90/180/3mm - 1.375	0.853	0.1502	
FiberWall 328 Fixed	6mm/366/Arg90/6mm/Arg90/180/6mm - 1.375	1.018	0.1793	
FiberWall 328 Fixed	6mm/366/Arg90/6mm/Arg90/180/6mm - 1.5	0.978	0.1722	
FiberWall 328 Fixed	6mm/366/Arg90/6mm/Arg90/180/6mm - 1.25	1.107	0.1950	

- **R:** <u>Single family homes.</u> *Minimum PG-15*
- LC: <u>Low or mid-rise multi-family</u>. Larger sizes, higher loading requirements. *Minimum PG-25*
- CW: <u>Mid-rise buildings</u>. Larger sizes, higher loading requirements, limits on deflection, and heavy use. *Minimum PG-30*
- AW: <u>Mid or high-rise buildings</u>. Appropriate where frequent and extreme use of product is expected. *Minimum PG-40*

location

of product

10

open

Ο

metres

rough

product height

above ground to top

<u>ter</u>rain type^A

NAFS – Building Code Requirement

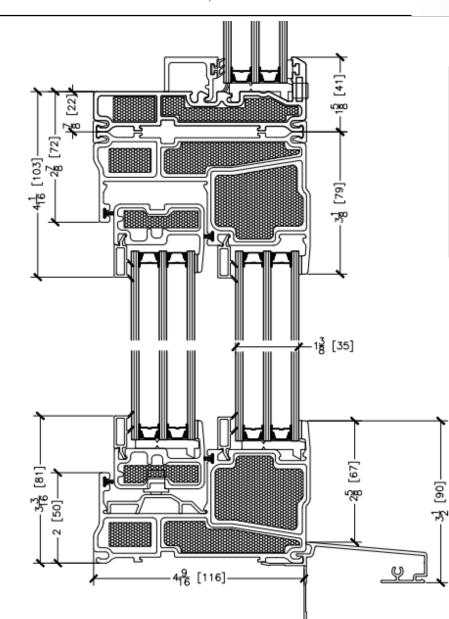
Single Storey Saskatoon Example

Compare to A3/B7/C5 Spec: www.fenestrationcanada.ca/calculator where performance requirements 0 saskatchewan province minimum performance grade (PG)^B **PG-70** 30 city ٥ saskatoon minimum positive design pressure 1440 PA 3360 PA 3360 PA minimum negative design pressure 1440 PA

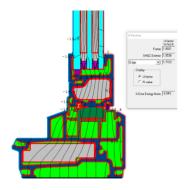
minimum water penetration resistance test pressure 260 PA

minimum canadian air infiltration/exfiltration^c

700 PA


A3

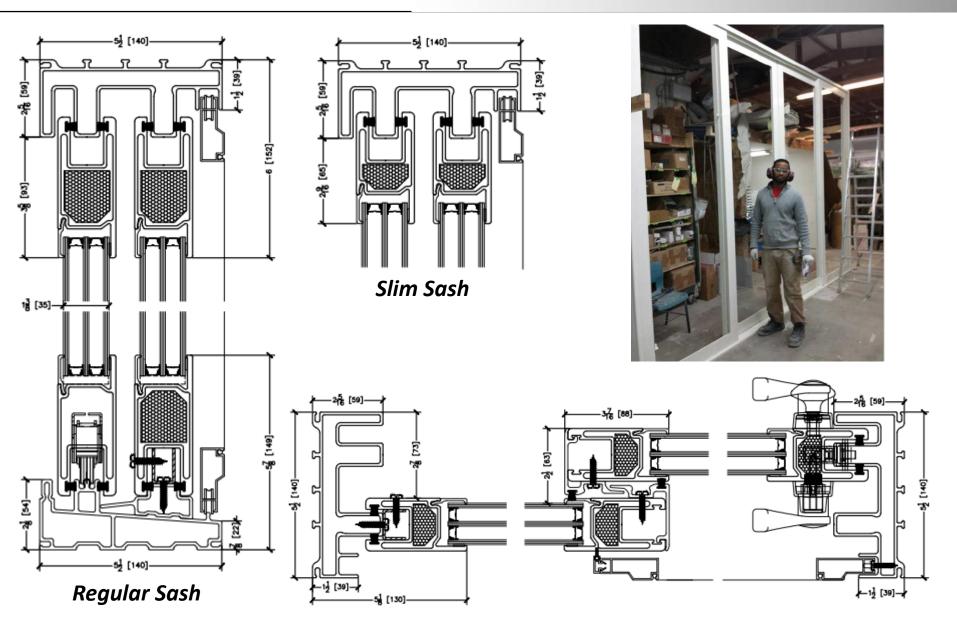
A2



Product Design for Thicker Glazing

Slider accommodates High Performance 6 mm Triples

Thermal Comparison: 458 Slider Triple vs 800 Series Slider Triple						
Glazing type: 6mm 180/4mm/4mm 180 (90% Arg)						
Component	U [w/m^2K] U [w/m^2K] % Improvement 458 Slider 800 Series Slider % over 800 Series (1.375" OD) (0.9375" OD) % Improvement					
Center of Glass	0.826	1.368	39.6%			
Overall Window	1.132	1.608	29.6%			



Product Design for Multi-Family Applications

Sliding Door for Superior Air, Water, Structural, and U-Value Performance

Living Building Challenge Favours Fiberglass

Wolf Ridge Environmental Learning Center

