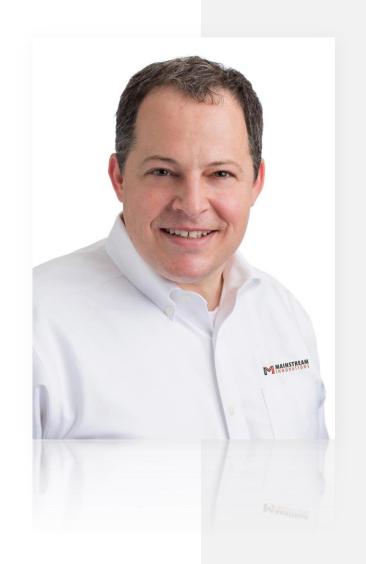
HEAT PUMPS

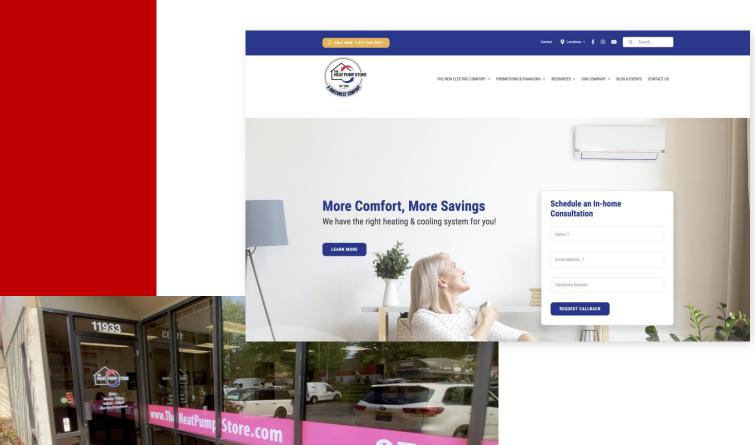
DESIGNING HEAT PUMP INSTALLATIONS FOR HEATING AND COOLING


PART 1

ABOUT

- 2005: Began selling heat pumps in homes
- 2009: Sales manager for a heat pump manufacturer
- 2011: Owner of USA's largest "Ductless Heat Pump Only" contracting company
- Now: Heat pump business consultant

JONATHAN **MOSCATELLO**

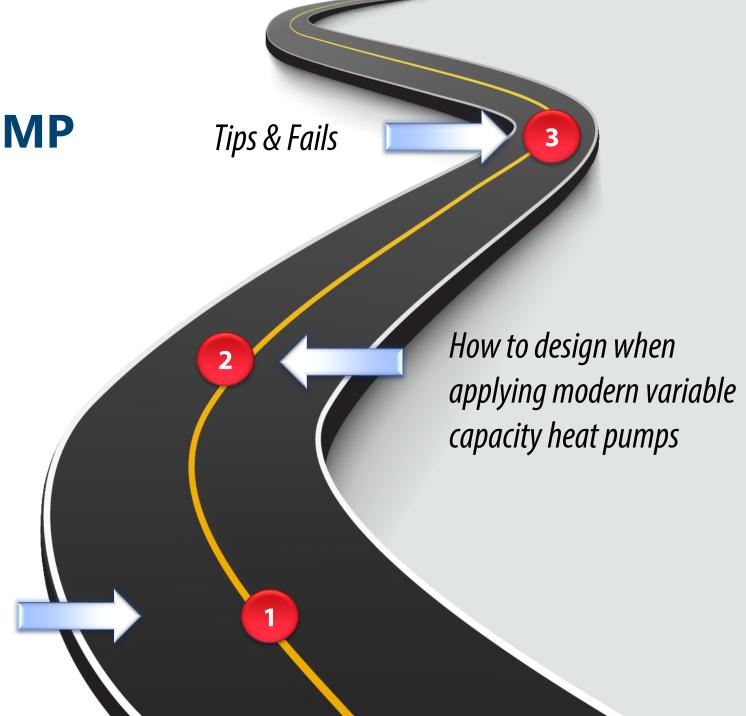


Jonathan's Contracting
Business Locations & Service
Area

LOTS & LOTS OF HEAT PUMPS!

IN THIS SEMINAR...

Learn how to design heat pump installations that <u>save</u> <u>energy</u> and make homeowners more <u>comfortable</u>.



DESIGNING HEAT PUMP INSTALLATIONS

For Heating & Cooling

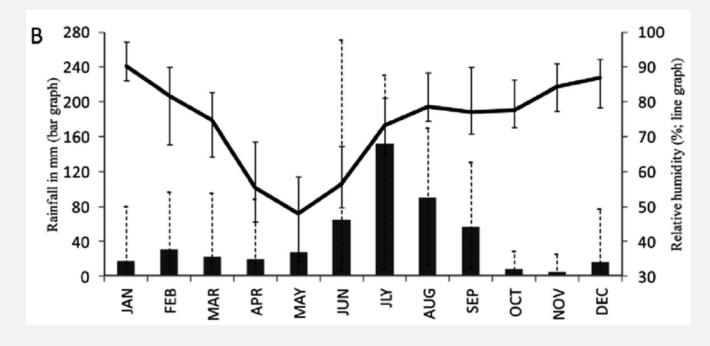
This helps you deliver on the claim that modern heat pumps deliver affordable comfort!

How heating & cooling installations are designed today

FOR MOST CONTRACTORS

Residential heating design relies on use of:

Fossil Fueled Furnace


Air Conditioner

EQUIPMENT SELECTION

Is designed to cover the coldest day of the year, with a limited amount of excess capacity.

Excess furnace capacity allows for recovery from thermostat setback at nighttime or unoccupied hours.

The added cost for (reasonable) excess capacity is negligible

Customers and contractors alike agree that the benefits of excess capacity outweigh any additional cost.

VARIABLE CAPACITY HEAT PUMPS (VCHP):

A Different Design Strategy

We don't need or want to design for "Excess Capacity" when applying a VCHP.

There are two main reasons why:

- **1. NO SET-BACKS:** Nighttime or unoccupied setback use more energy. So "set it, and forget it"
- **2. WASTEFUL**: Designing for excess capacity wastes a lot of money!

THE

FOUR STEP HEAT PUMP

Design Process

Always use when applying variable capacity heat pumps:

- 1 Perform a Load Calculation
- 2 Evaluate the Ductwork Capacity
- **3 Identify Low-Cost Building Envelope Improvements**
- **4 Select the Heat Pump System**

4-STEP H/P DESIGN PROCESS

STEP 1

PERFORM A LOAD CALCULATION

Don't design by guesswork...be a Pro!

Always perform a load calculation:

- You can't rely on current equipment sizes
- Many homes have had some upgrades over the years



EXAMPLELoad Calculation

- 1976 construction
- Conditioned area 2,020 ft²
- R-30 insulation in attic
- R-11 in walls
- 2 pane vinyl replacement windows

- Some air sealing
- Ducts in unfinished basement
- 8 ft ceilings
- South facing

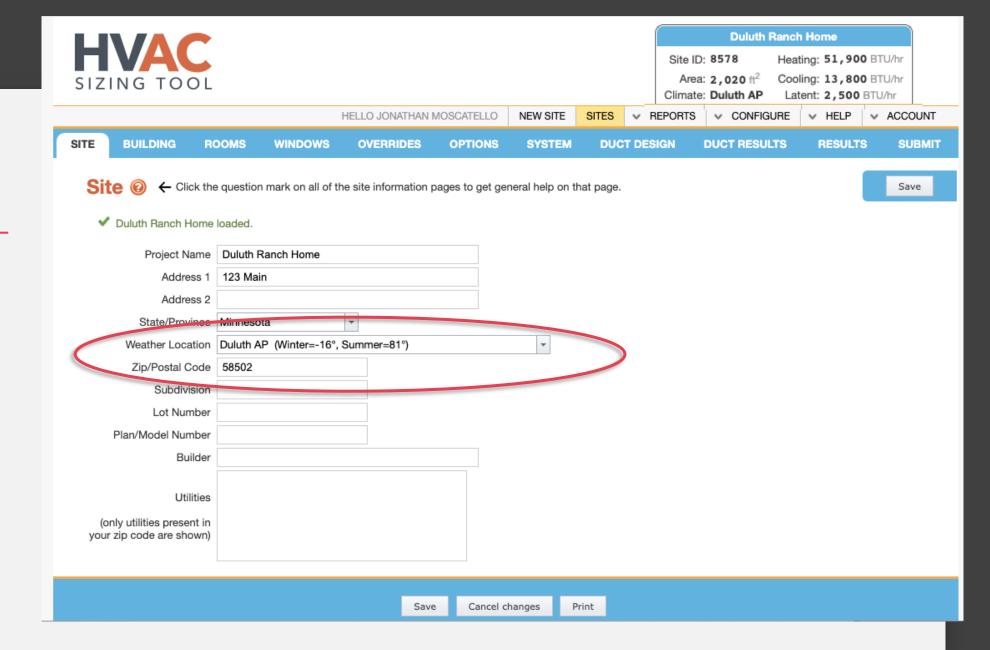
Master Bathroom – 40ft² Dining Room –120ft²

Master Bedroom – 216ft² Living Room – 240ft²

Bedroom 1 – 216ft² Kitchen – 216ft²

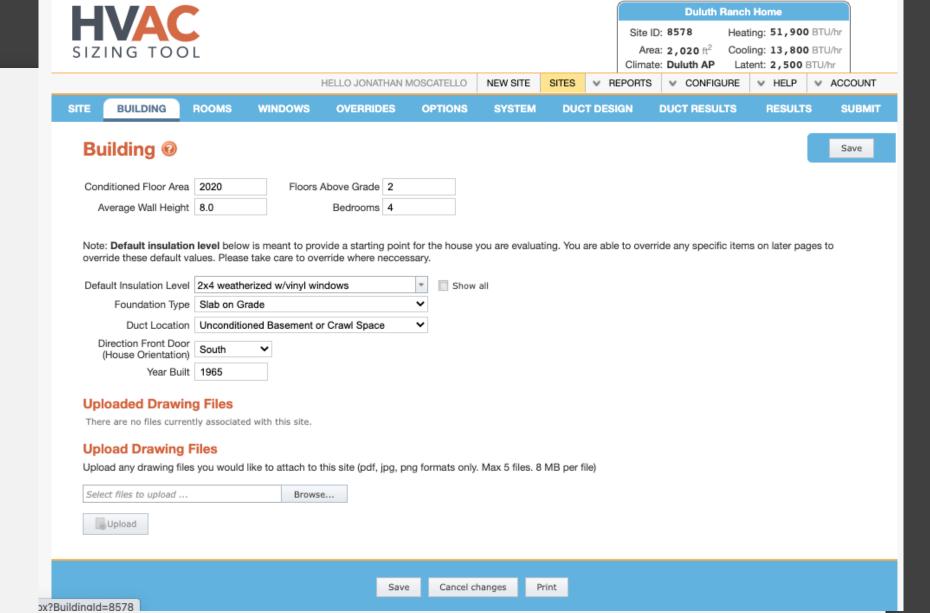
Bedroom 2 – 144ft² Utility – 70ft²

Bedroom 3 – 180ft² Hallway – 170ft²


Family Room – 288ft² Bathroom 1 – 120ft²

SITE INFO

All weather data assumes sizing using the 1% hourly average.



BUILDING INFO

Pre-set construction values for insulation, windows and more. These can be refined later.

Duluth Ranch Home

Site ID: 8578 Heating: 51,900 BTU/hr Cooling: 13,800 BTU/hr Area: 2,020 ft² Climate: Duluth AP Latent: 2,500 BTU/hr

HELLO JONATHAN MOSCATELLO

NEW SITE

SITES

HELP

✓ ACCOUNT

SITE

ROOMS

WINDOWS

OVERRIDES

OPTIONS

SYSTEM

DUCT DESIGN

DUCT RESULTS RESULTS

SUBMIT

BUILDING

Save

Building sq ft correctly matches floor area.

Building Sqft: 2,020

New Room	Room Name	Floor Area	Exterior Length	Height Override	Unconditioned Above Ceiling	Unconditioned Below FLoor	In Basement	Redistribute Room
Delete	Master Bathroom	40	5.0		100%	0%		
Delete	Master Bedroom	216	30.0		100%	0%		
Delete	Bedroom 1	216	30.0		100%	0%		
Delete	Bedroom 2	144	12.0		100%	0%		
Delete	Bedroom 3	180	12.0		0%	100%		
Delete	Family Room	288	16.0		0%	100%		
Delete	Dining Room	120	10.0		100%	0%		
Delete	Living Room	240	20.0		100%	0%		
Delete	Kitchen	216	12.0		100%	0%		
Delete	Utility	70	14.0		0%	100%		
Delete	Hallway	170	5.0		0%	100%		
Delete	Bathroom 1	120	8.0		100%	100%		
	Total = 2,020							

ROOM

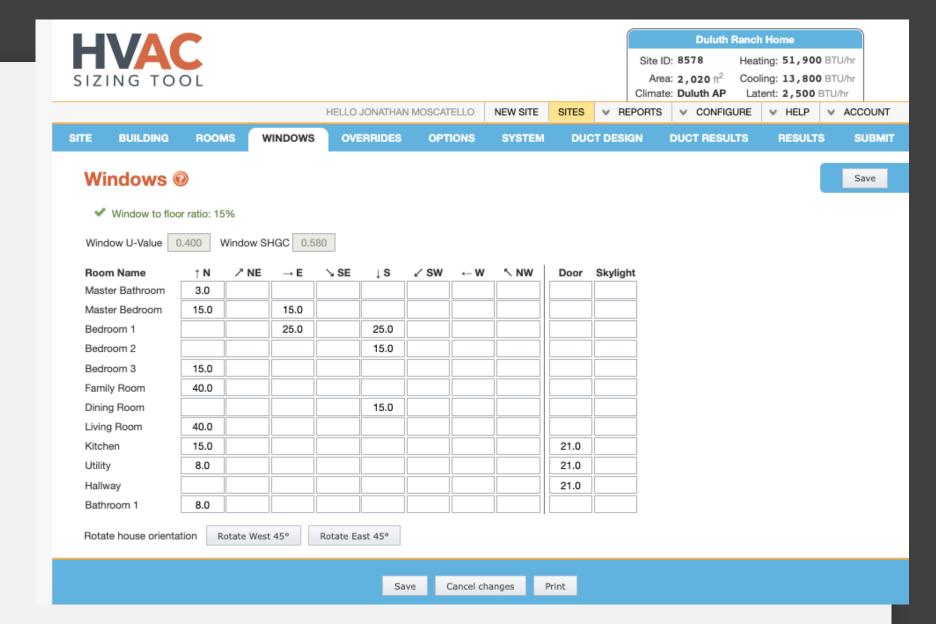
ROOM

table.

INFORMATION

INFORMATION is

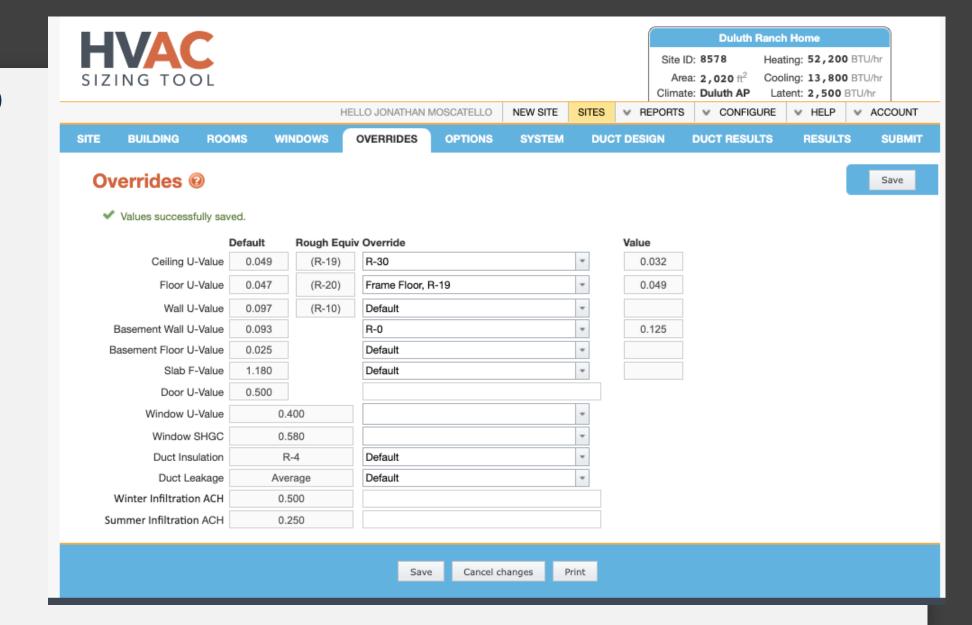
entered in a simple


Cancel changes

Print

WINDOW AND DOOR INFORMATION

Windows and doors entered in the correct orientation and in the room in which they are located.

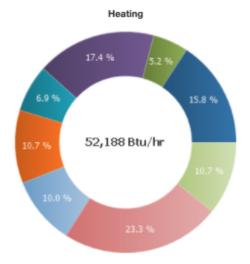


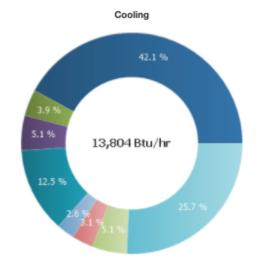
OPTIONS AND OVERRIDES

Dial in site specific factors such as insulation, weather, infiltration, occupants, internal loads, etc. using overrides and options

result of heating

LOAD CALCULATION

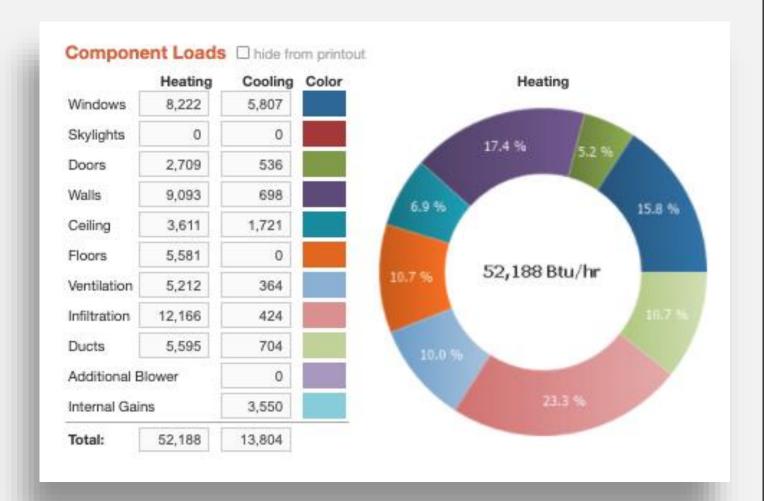



Room Data and Loads hide from printout

					Actual	F1						0 11
Room Name	Suggested Ducts	Actual Ducts	Duct Size	CFM/Duct	CFM Measured	Floor Area	Ext. Length	Height Override	Uncond Ceiling	Uncond Floor	Heating Load	Cooling Load
Master Bathroom	1		4	36		40	5.0		100 %	0 %	1,093	215
Master Bedroom	3		4	95		216	30.0		100 %	0 %	6,773	2,070
Bedroom 1	4		4	123		216	30.0		100 %	0 %	7,365	3,257
Bedroom 2	2		4	67		144	12.0		100 %	0 %	3,127	1,055
Bedroom 3	2		4	67		180	12.0		0 %	100 %	4,152	649
Family Room	2		4	100		288	16.0		0 %	100 %	6,252	1,230
Dining Room	2		4	63		120	10.0		100 %	0 %	2,680	958
Living Room	2		4	92		240	20.0		100 %	0 %	5,655	1,508
Kitchen	2		4	69		216	12.0		100 %	0 %	4,364	1,202
Utility	2		4	88		70	14.0		0 %	100 %	5,028	536
Hallway	1		4	79		170	5.0		0 %	100 %	2,617	548
Bathroom 1	1		4	101		120	8.0		100 %	100 %	3,084	575
Total	24	0			[2,020					52,188	13,804

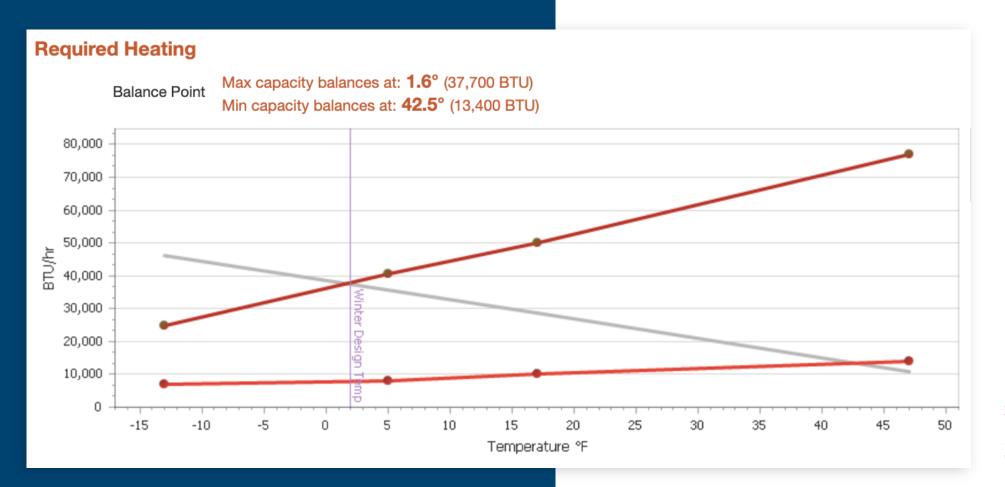
Component Loads hide from printout

	Heating	Cooling	Color
Windows	8,222	5,807	
Skylights	0	0	
Doors	2,709	536	
Walls	9,093	698	
Ceiling	3,611	1,721	
Floors	5,581	0	
Ventilation	5,212	364	
Infiltration	12,166	424	
Ducts	5,595	704	
Additional B	Blower	0	
Internal Gai	ins	3,550	
Total	52 100	12 904	



with this data, we learn a few

KEY THINGS:

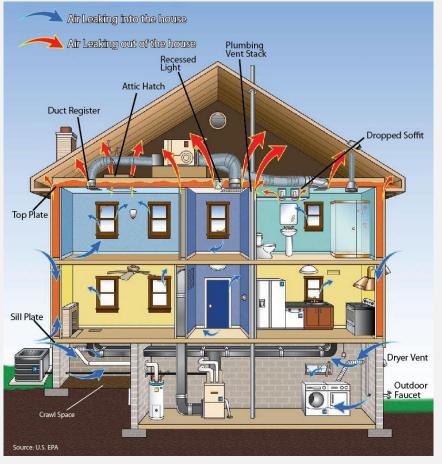

- Heating and cooling requirements are generally less than guessed
- 2) "Where" the heating loss occurs is helpful—it shows us where we can look for simple, low cost weatherization upgrades.

result of EQUIPMENT SELECTION

One simple graph shows both the heating requirement and heat pump performance—this makes your job easier!

4-STEP H/P DESIGN PROCESS

STEP 2 EVALUATE EXISTING DUCTWORK


If your design reuses existing ductwork:

Can it handle the new system air requirement?

FIELD DUCT SIZING CHART

FIELD DO	E ESTIMATE A Metal	Pipe
ROUND DUCT SIZ	E ESTIMATE Round Metal	sign Airflow
ROUND	Duct Size De	sign
	Duce	50
Flexible Duct	5"	85
	6"	125
Duct Size Design	7"	
		180
13	8"	240
6" 110	9"	
7" 160		325
	10"	525
8" 225	12"	750
9" 300		
300	14"	1200
10" 480	16"	1500
12" 700	18"	
14" 1000		2000
	20"	- dators
16" 1300	Stem team team team team team team team t	duct calculate.
18" 1700	motal pipe = .06" on most me	
20" Indiator	Round metal pipe = .06" on most metal	

20"	t calculator	Rounding	TE ESTIM	AILE
20	on most metal duct calculator	P DUCT S	ZE LOTT	inche
Flex duct = .05	DECTANGULA	N inside	dimension in	40"

Flex duct = .0	RECTA	NGULAK uct Height - Net i	nside dimensio	10"	CFM 4x1	2
	Di	act Height	8" 120		070 6x1	2
Design 4"	CFM	00	4x8	5 6x10	100 8X	12
CFM	4 60	4x6 90 6x6 160	6x8 21 8x8 31	0 8X10	EEO 10)	12
60 OV	110	0v6 230	10x8 4	30 10×10 50 12×10	680 12	x12
90 40	V4 160	10x6 310	1248 5	30 14440	000	x12 5x12
	215 T	4276 400	1448	46×10	950	8×12
180 14	4x4 270 320	14x6 490	46V8	10410	1100	0x12
210 1	6X4	16X6	18x8	1060 20x10	1230 2	2x12
240 1	884	18X6	20x0	1200 22X11	1600	24×12
210	20x4 490	20x6 730 22x6 840	1 2220	4220 24X1	0 1000	26x12
300	24×4 540	93		1420 26X1	1050	28x12
330	600	26V6 10	20 2049	1550 28x	10 2150	30x12
No.	650	1 20v6 111	00 2049	1670	10 2300	32x12 34x12
	710	20v6 1	200	1000	10 2450	36x12
			300 34x8	1930 345 2060 36	v10 2000	38x12
40	21/2 ×10	1-3	500 36x8	2000 38	x10 2750	40x12
70	21/2 ×14			2350 40	1x10 2900	10.42
150	21/2 ×30	00 31/2 ×14	duct = 07° on mo	metal duct calcul	ators 3030	
	2	20 31/2 x30	duct = 07" on mo	St mara		

Step One - Identify the volume of air that will be passing through the duct Step Une - Identity the volume of all their will be passing anough the sand.

Step Two - Select the duct size from the table that can carry that volume of air. Step Two - Select the duct size from the table that can carry that volume of all Step Three - If desired airflow exceeds the CFM rating , increase to the next duct size Step Four - Listed CFM is based on typical field results and may vary, install dampers

Step Four - Listed CFM is based on typical neigresults and may vary, install dampers
Step Five - If duct run exceeds 25; or has excessive transitions, increase to the next size
Step Six - Design alone is inadequate, always prove design by test and balance.

Use Ductulator & Worksheet

Ensure ductwork can handle **MAXIMUM** system airfow

EXAMPLE *EVALUATING EXISTING DUCTWORK*

2

Calculate total RUN capacity

Calculate TRUNK			
maximum capacity			

Width:	OR	Round-pipe Diameter:				
Height:						
Use DUCTULATOR @ 0.1" ESP to calculate maximum airflow:						
CFM						

Duct Diameter	Metal Pipe	Flex Duct	ENTER # of Runs	Multiply # x CFM / run
4"	40	40		
5"	50	50		
6"	85	75		
7"	125	110		
8"	180	160		
9"	240	225		
10"	325	300		
ADD all va	d column >	CFM		

Which value is greater?

PUMP

Enter TRUNK or total RUN capacity_____cfm and Divide by 400 cfm/ton _____.

The resulting number is the maximum heat pump "tonnage" the ductwork can handle.

4-STEP H/P DESIGN PROCESS

STEP 3

Evaluate the **BUILDING ENVELOPE**

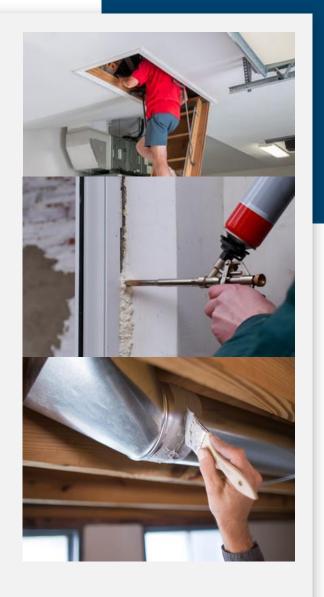
THE GOAL

Lower the heating requirement, making application of a VCHP easier

Look for easy, low-cost improvements.

MASTERY: Partner with a weatherization contractor!

LOW-COST WEATHERIZATION IDEAS

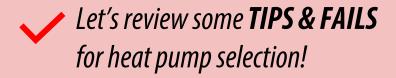

To reduce HEAT LOSS through the **BUILDING ENVELOPE**

Look for easy, low-cost improvements, like these:

- Air seal and insulate the attic access
- More attic insultation
- Air seal and insulate ductwork
- Seal cracks and air gaps around foundations and fenestrations

GOAL: Try to REDUCE the heating load calculation by 6,000 or more!

4-STEP H/P DESIGN PROCESS



STEP 4

Selecting the **HEAT PUMP SYSTEM**

Your selection should be influenced by:

- 1. Load calculation
- 2. Ductwork capacity
- 3. Building envelope improvements

WHAT ABOUT THE

DESIGN DIFFERENCES

Between Standard AC and Variable Capacity H/P?

It depends on the type of H/P you are selecting:

- VCHP: Pick for the larger of the two loads.
- Single speed: Pick for the smaller of the two loads.

COMPARISON OF HOW TO

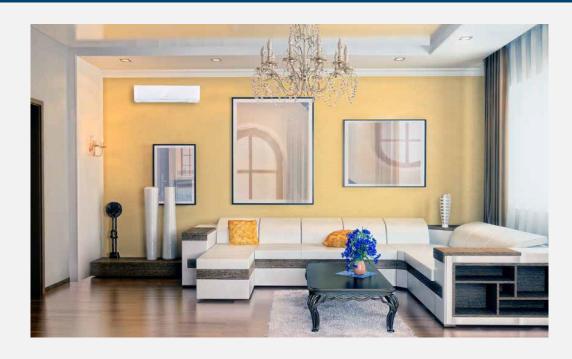
SIZE EQUIPMENT

Heat Pump Type	Variable Capacity	Single Speed	
Sizing method LOUIDUIT TO MAX OUT QUCTWORK		Sized for cooling load. Do not oversize.	
Quantity of Back-up Heat Small capacity heater used make up GAP between H/P output and heating design requirements.		Large capacity of heater used replace H/P capacity.	
Operation of Back-up Heat Very little usage, thanks to large heat pump capacity and good low-temp operation.		High usage because heat pump "balance point" is high.	

TIPS

for equipment selection & installation design

- 1. Know your equipment options
- 2. Try using multiple heat pumps
- 3. Use secondary heating sources on the coldest days
- 4. Be prepared for "Empty Nester's"
- 5. Learn the "Displacement technique"
- 6. The undersized ductwork solution


TIP #1

Know Your VCHP Equipment Options

There are several types of Variable Capacity Heat Pumps:

- 1. Cold-Climate VCHPs
- 2. Multi-zone VCHPs
- 3. Many **indoor unit** options to choose from

Your **CHOICE** in **TYPE** should depend on where you live and the design goals of the project!

Try Using Multiple Heat Pumps

There are times when its best to use multiple systems in the home...

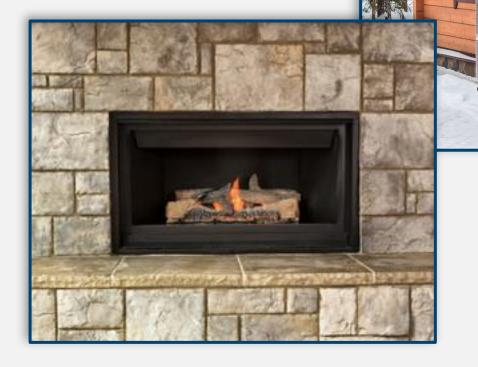
- ✓ When one large system will use more energy than two small systems
- ✓ When you need lots of BTUs
- ✓ When there are "hot spots and cold spots" (bad ductwork)

COMPARING

CAPACITY DIFFERENCES

Between Multi-Zone and Single Zone Heat Pumps

Total Capacity at TEMPS	Daikin 4MXS36 Multizone	Daikin 4MXL36 Cold-Climate Multizone	(2) Daikin RXL18 Single Zone
47° F	43,000	54,500	(2) X 28,000 = 56,000 TC
17° F	32,000	45,000	(2) X 25,000 = 50,000 TC
5° F	23,000	36,000	(2) X 21,000 = 42,000 TC
-13° F	- Not rated -	23,000	(2) X 15,000 = 30,000 TC

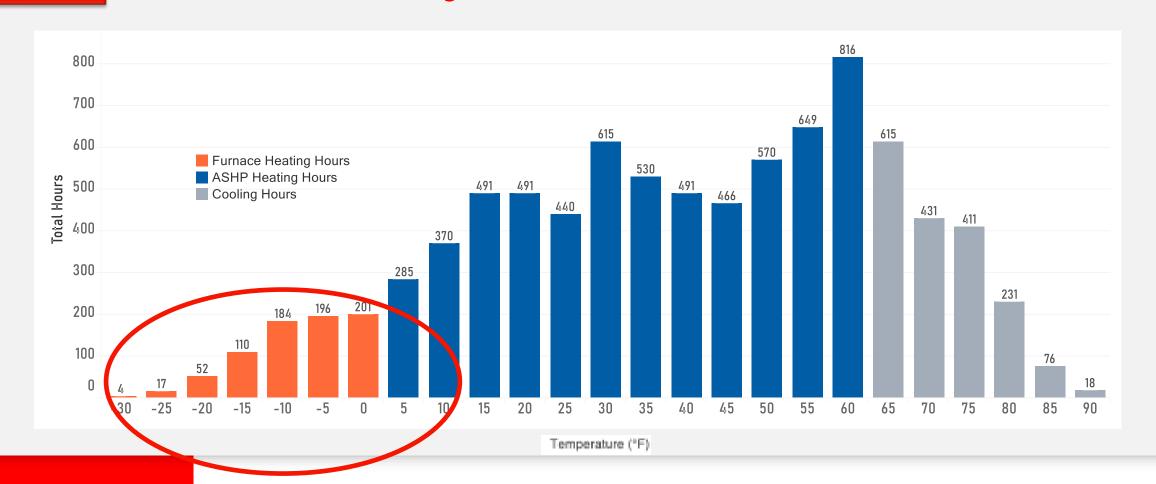

TIP #3

Design for use of secondary heat on the coldest days of the year

- The number of days with extreme temperatures are very few. Incorporate secondary heating sources to supplement the VCHP.
- This reduces the heating requirement significantly, making a VCHP application easier.

Secondary heating sources include:

Heated floors and towel tracks, fireplace inserts, wood stoves, electric baseboards, and more!



BIN WEATHER DATA

ST. CLOUD

Less that 5 % of heating hours are below 5 ° F

TIP #4

Be Prepared for "Empty Nesters"

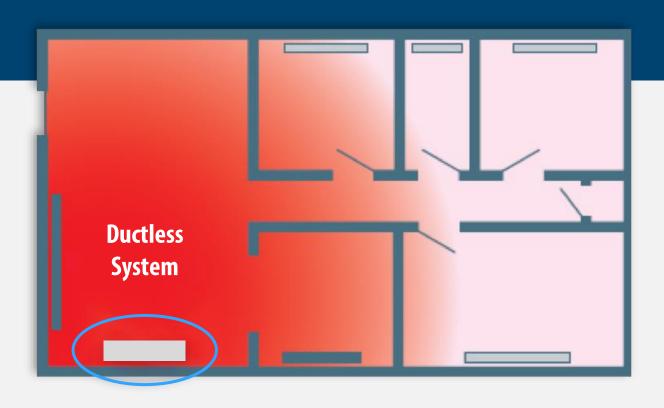
This is a big opportunity!

When the kids move out, why condition

the whole home?

The central system is working, but we use a two-zone ductless system to condition:

- 1. The master bedroom
- 2. The kitchen/family room



TIP #5

Learn & Use the "DISPLACEMENT" Technique

DISPLACEMENT

Allows people to try a heat pump without a huge investment to convert the entire home.

DISPLACEMENT SOLUTION: Single-head ductless system in primary living area; existing heat remain used as back-up.

TIP #6

Be Prepared for the UNDERSIZED DUCTWORK Scenario

This will sometimes occur, when in older homes that originally had oil or low-pressure natural gas furnaces.

- 1. Learn to evaluate the ductwork *can it handle the heat pump's system air?*
- 2. If needed use a second indoor unit (ductless) to drop the additional conditioning needed to meet load requirements.

Typical

FAILS

to watch out for and avoid!

- 1. Relying on Guesswork
- 2. Opening Pandora's Box
- 3. Applying One Big Heat Pump
- 4. Bigger is Better
- 5. Too Many Heads
- 6. The Undersized Ductwork Solution

Relying on Guesswork

In particular, be sure to research and know the **Equipment Capacity.**

Research the manufacturer's engineering performance data to learn what the unit can produce at your design temperature.

Opening Pandora's Box

With your installation "layout" or design, **keep it simple.**

Lots of installers get overly complicated (primarily a ductless issue):

- 1. System layout too complicated
- 2. Too many indoor units
- 3. Poor choice of indoor unit

"Just because you **CAN** do something, doesn't mean you **SHOULD**"

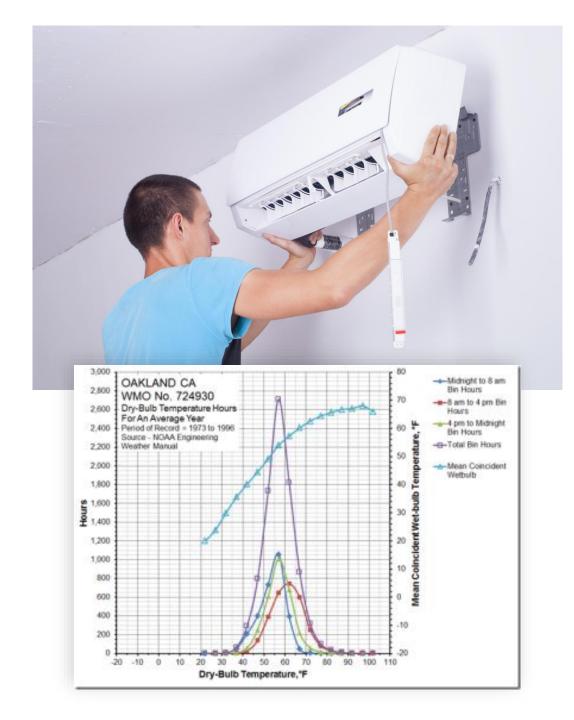
Applying ONE BIG Heat Pump

Eliminate "Central Plant" style thinking.

With VCHP's in some cases two outdoor units will be needed:

- 1. In homes with very large heating loads
- Homes with ductworks issues (Hot Spots/Cold Spots)
- 3. [With Ductless] it can reduce labor and materials costs

"Sometimes two is better than one"


Bigger is Better

Stop oversizing.

VCHPs work better when they are at sized very closely to the heating requirement.

- 1. Use load calculation software
- 2. Set design temperature to 1%
- 3. Select equipment based off manufacturer's performance data

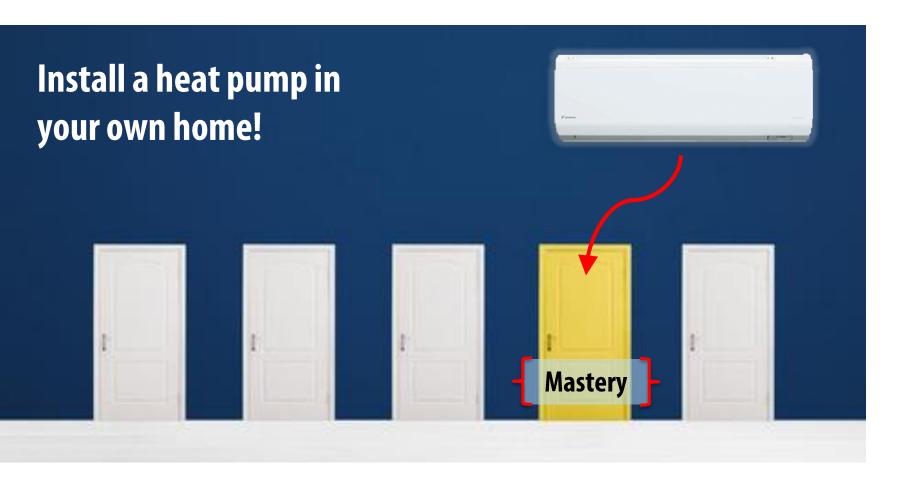
"OVERSIZING — Just don't do it"

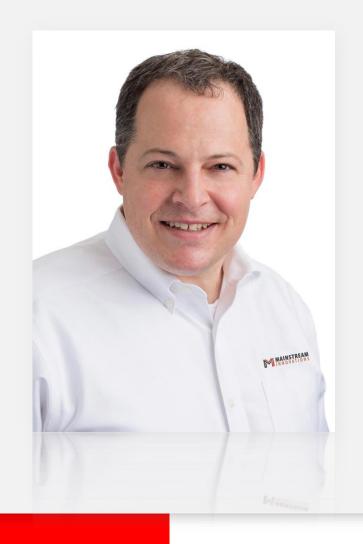
Too Many Heads Ductless Related Issue

Ductless "heads" move more air than you think and can distribute conditioning widely.

Less is more because they condition and circulate constantly.

YOU CAN DO THIS!


- Use the 4-step heat pump design process
- 2. Get load and ductwork design training
- 3. Use the TIPS; learn from the FAILS


PATH TO MASTERY

There is no more powerful statement than, "After I installed one in my home...."

THANK YOU!

Let's stay in touch!

Jonathan Moscatello (503) 267-6425 jm@mainstreaminnovations.net

www.MainstreamInnovations.net

HEAT PUMPS

DESIGNING HEAT PUMP INSTALLATIONS FOR HEATING AND COOLING

