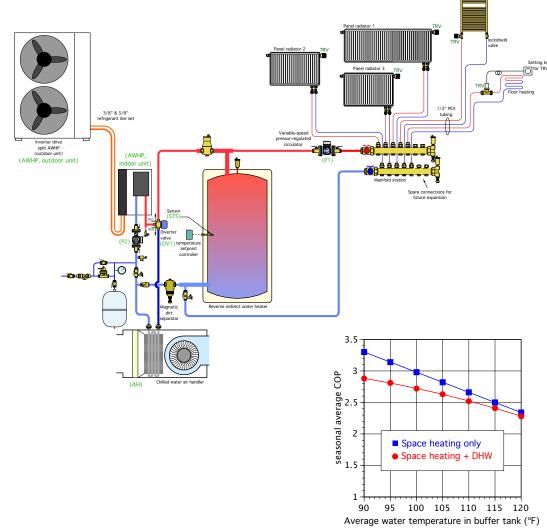

Hydronics for Low-Energy & Net-Zero Homes

Feb 22, 2022 Duluth, MN

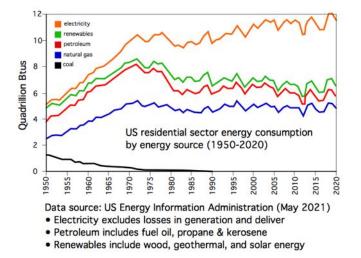
Presented by: John Siegenthaler, P.E. Principal - Appropriate Designs Holland Patent, NY e-mail: siggy0269@gmail.com phone: 315-865-8903

© Copyright 2022, J. Siegenthaler, all rights reserved. The contents of this file shall not be copied or transmitted in any form without written permission of the author. All diagrams shown in this file on conceptual and not intended as fully detailed installation drawings. No warranty is made as the the suitability of any drawings or data for a particular application.



Hydronics for Low-Energy & Net-Zero Homes

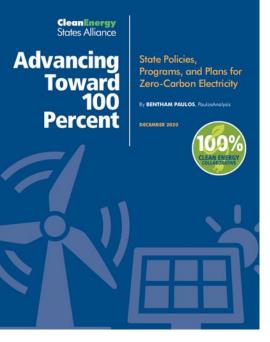
Topics we'll cover...


- Electrification is coming and FAST!
- Poor perceptions of hydronic systems
- What's changing with residential construction?
- Comfort vs. thermodynamics?
- Why hydronics?
- What's an air-to-water heat pump?
- Retrofitting an AWHP to an existing system
- Example systems

Electrification is happening - everywhere...

During 2020, utility-scale solar photovoltaic systems and utility-scale wind turbine systems accounted for more than 75 percent of all new electrical generation in the U.S.

This trend represents a huge opportunity for the North American hydronics industry.


Electrification in North America

States with 100 Percent Clean Energy Goals

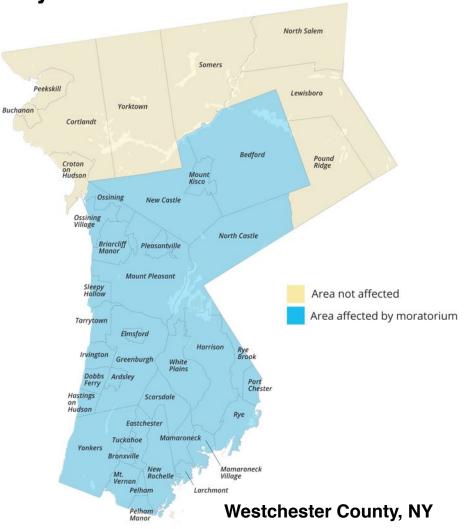
State	The Goal	Comments		
Arizona	100% carbon-free electricity by 2050	Adopted by order of the Arizona Commerce Commission in November 2020, extending and expanding the existin state RPS, Docket number RU-00000A-18-0284.		
California	100% carbon-free electricity by 2045	2018 legislation (SB 100) extended and expanded the existing state RPS. State agencies are required to submit implementation plans by January 1, 2021. Also in 2018, Gov. Jerry Brown's Executive Order B-55-18 set a goal of statewide carbon neutrality by no later than 2045, with net negative GHG emissions thereafter.		
Colorado	100% carbon-free electricity by 2050 for Xcel Energy	A 2019 law (SB 19-236) codified a pledge previously made by Xcel, whose service territory covers approxi- mately 60% of the state's load. It is mandatory "so long as it is technically and economically feasible."		
Connecticut	100% carbon-free electricity by 2040	Governor Ned Lamont's 2019 Executive Order (Number 3) set a 2040 goal for carbon-free electricity and asked the Department of Energy and Environmental Protection to develop a decarbonization plan for the power sector, in line with previous legislation to cut economy-wide carbon emissions by 80% below 2001 levels by 2050.		
District of Columbia	100% renewable electricity by 2032 through the RPS	The Clean Energy DC Omnibus Amendment Act of 2018 (DC Act 22-583) amended the existing RPS to mandate 100% renewable electricity by the year 2032.		
Hawaii	100% renewable energy by 2045 through the RPS	2015 legislation (HB623) made Hawaii the first state to set a 100% RPS for the electricity sector.		
Louisiana	Net zero greenhouse gas emissions by 2050	Governor John Bel Edwards' 2020 Executive Order (JBE 2020-18) established a Climate Initiatives Task Force to develop a roadmap and make recommendations.		

The "operative" word in these energy targets is ELECTRICITY...

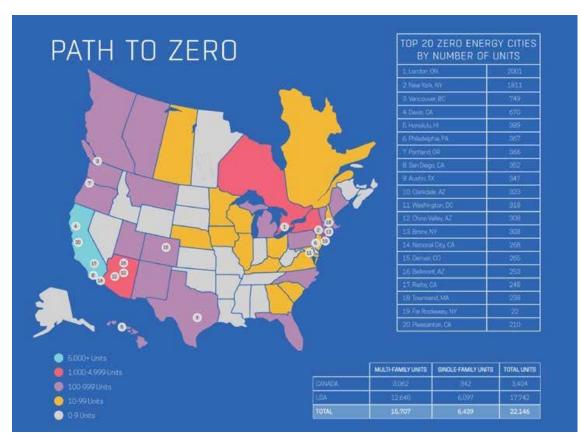
State	The Goal	Comments		
Maine	100% clean energy by 2050	2019 legislation (LD 1494) increased Maine's RPS to 80% by 2030, and set a goal of 100% by 2050. Also LD 1679 sets an economy-wide goal of 80% cuts to greenhouse gases by 2050.		
Massachusetts	Net-zero greenhouse gas emissions by 2050	In April 2020, the Executive Office of Energy and Environmental Affairs set a 2050 net-zero goal under the authority of 2008 legislation, and is developing a roadmap by the end of 2020.		
Michigan	Economy-wide carbon neutrality by 2050	Governor Gretchen Whitmer's order in 2020 (Executive Directive 2020-10) set a goal "to achieve economy-wide carbon neutrality no later than 2050." It directed the Department of Environment, Great Lakes, and Energy to develop a plan by the end of 2021.		
Nevada	100% carbon-free electricity by 2050	2019 legislation (SB 358) raised the RPS to 50% by 2030 and set a goal of a net-zero emission power sector by 2050.		
New Jersey	100% carbon-free electricity by 2050	Governor Phil Murphy's Executive Order 28 in 2018 set a carbon free goal for the power sector and directed the BPU to develop an Energy Master Plan, which was released in 2020.		
New Mexico	100% carbon-free electricity by 2045	2019 legislation (SB 489) requires a zero-carbon power supply by 2050, with at least 80% from renewables.		
New York	100% zero-emission electricity by 2040	2019 legislation (\$6599) requires zero-emissions electric- ity by 2040 and sets a goal of cutting all state GHGs 859 by 2050. A Climate Action Council will develop a plan.		
Puerto Rico	100% renewable energy f <mark>or electricity</mark> by 2050	2019 legislation (S81121), the Public Energy Policy Law of Puerlo Rico, set a timeline for reaching 100% renew- able electricity by the year 2050.		
Rhode Island	100% renewable energy electricity by 2030	Governor Gina Raimondo's 2020 Executive Order (20-01 requires the Office of Energy Resources to "conduct economic and energy market analysis and develop viabl policy and programmatic pathways" to meet 100% of statewide electricity deliveries with renewables by 2030.		
Virginia	100% carbon- free electricity by 2045 for Dominion Energy and 2050 for Appalachian Power Company	The 2020 Virginia Clean Economy Act (House Bill 1526 and Senate Bill 851) requires zero-carbon utilities by 2050 at the latest.		
Washington	100% zero- emissio <mark>ns electricity</mark> by 2045	2019's Clean Energy Transformation Act (SB5116) applies to all utilities. The state Commerce Department started a rulemaking process in August 2019. Utilities must file implementation plans by January 2022.		
Wisconsin	100% carbon-free electricity by 2050	Governor Tony Evers' Executive Order (EO38) in 2019 directed a new Office of Sustainability and Clean Energy to "achieve a goal" of all carbon-free power by 2050.		

https://www.cesa.org/wpcontent/uploads/Advancing-Toward-100.pdf

Moritoriums on fossil fuels - happening rapidly


WESTCHESTER COUNTY, NY: National Grid has said it will not approve requests for new or upgraded gas service in its territory in New York City and Long Island until the state approves a \$1 billion natural gas pipeline, arguing there will be a lack of adequate gas supply until it's built.

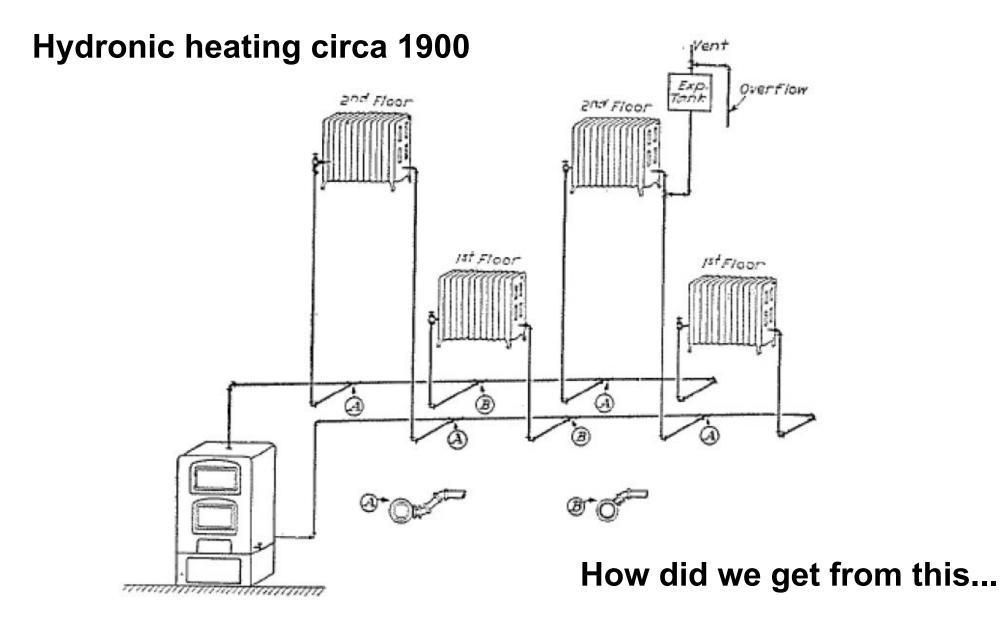
HOLYOKE MA,— Holyoke Gas and Electric (HG&E) has imposed a moratorium on new natural gas connections for residential and business customers, citing no increases in pipeline capacity by Berkshire Gas and Columbia Gas of Massachusetts.


SEATTLE, WA -- As of Jan 1, 2022 multi-family building of 4 stories of less will no longer be permitted to use natural gas for heating or hot water. Gas fireplaces, cooking appliances will still be permitted

Other locations where natural gas is being restricted (or banned in some instances)

BROOKLINE, MA SAN FRANSISCO NEW YORK CITY SACRAMENTO OAKLAND VANCOUVER

Net-zero buildings are one of the fastest growing sectors of the construction market

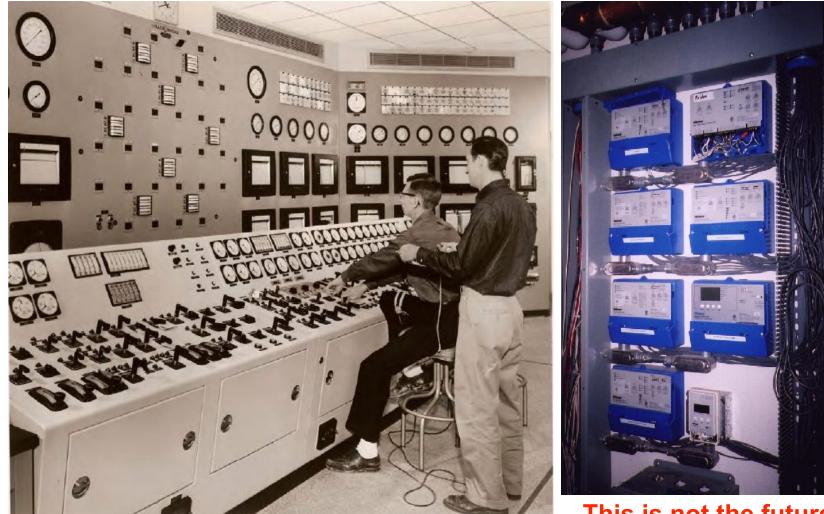

The Global Zero Net Energy Building (NZEB) Market is expected to grow at a significant CAGR of 15% by 2028.

The zero net energy (ZNE) homes market is just beginning to emerge, according to a recent report from Navigant Research called ZNE, Near-ZNE, and ZNE-Ready Homes: Market Drivers, Case Studies, and Forecast Data. Growth is expected to reach 27,000 total units by 2025.

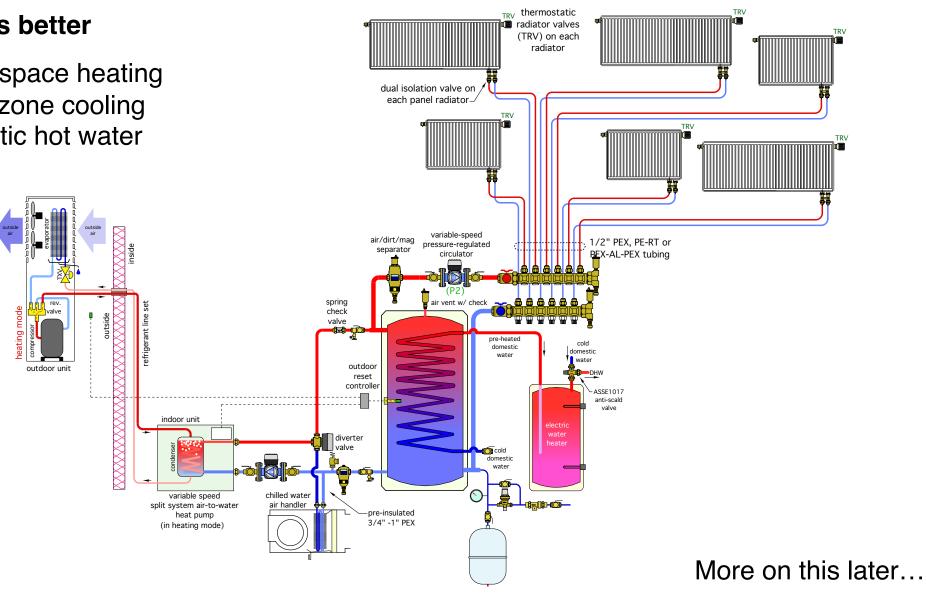
The Net-Zero Energy Coalition estimates the U.S. has only 5,000 net-zero energy single-family homes and over 7,000 net-zero multi-family homes. That number could expand in 2020 to over 100,000 net-zero energy homes, based on the average annual new home constructions in California.

Poor perception of hydronic systems in low-energy residential applications

To this??



To this??


Is this what it takes to operate a hydronic heating system???

This is not the future of hydronics!

Simple is better

- Zoned space heating
- Single zone cooling
- Domestic hot water

Adapting hydronics technology to evolving building requirements

Factors affecting residential building

• Energy codes (and energy prices) are forcing lower design heating loads (Pre-1990 houses design load where typically 25-40 Btu/hr/ft²⁾ (Modern low energy houses have typical design loads of 10-15 Btu/hr/ft²⁾

• Strong interest in "net zero" homes - all electric w/ solar PV electric systems (Strong incentive for use of heat pumps)

• Strong consumer interest in sustainability, resiliency, and recyclable materials (Well constructed hydronic systems can last for decades. Steel is highly recyclable)

• More consumers want **cooling** in their home (This has been a "missing piece of the hydronics puzzle" for decades - but it's changing...)

• Large surface area radiant panels operate at low surface temperatures (71-75°F) in low-energy homes. (Heated floors don't get as warm as they used to - they don't need to...)

• Internal heat gains can have more significant impact on internal temperature (Room-by-room zoning is important to control overheating)

 Increasing interest in good interior environmental quality (Limiting spread of interior odors, dust, microbes)

• Discriminating interest in achieving superior comfort (Significant % of homeowners dissatisfied with the comfort of their current HVAC system)

It's about <u>COMFORT</u>...

Not just matching BTU delivery to load...

Why is the "net zero" housing market seemingly defaulting to mini-split heat pumps rather than hydronics?

source: Revision Energy

Common suggestion for net zero houses.... Install a ductless mini-split air-to-air heat pump, with 1 or 2 indoor wall cassettes, and leave the interior doors open for heat distribution.

from www.greenbuildingadvisor.com

"Leave bedroom doors open during the day

If you want to heat your house with a ductless minisplit located in a living room or hallway, you'll need to leave your bedroom doors open during the day. <u>When the bedroom</u> <u>doors are closed at night, bedroom temperatures may</u> <u>drop 5 F° between bedtime and morning.</u>"

"If family members don't want to abide by this approach, or don't want to accept occasional low bedroom temperatures during the winter, **then supplemental electric resistance heaters should be installed in the bedrooms."**

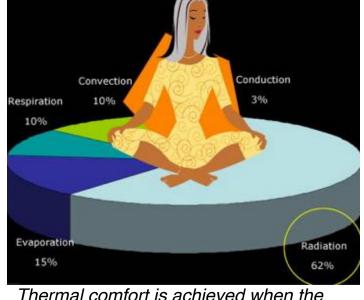
This is certainly a compromise in comfort.

The "sub 0°F" COPs of cold climate ductless mini-split heat pumps with inverter compressors, are not publicized.

9 Ways to Hide a Minisplit

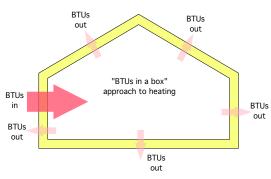
December 20, 2019

Indoor Environmental Quality (IEQ) is affected by many factors, including:


- Air temperature
- Temperature of surrounding surfaces (mean radiant temperature)
- Air temperature stratification (variations from floor to ceiling)
- Relative humidity
- Air movement (drafts, or higher velocity air movement)
- Air cleanliness (dust & microbes suspended in air)
- Undesirable noises

Why is this import?

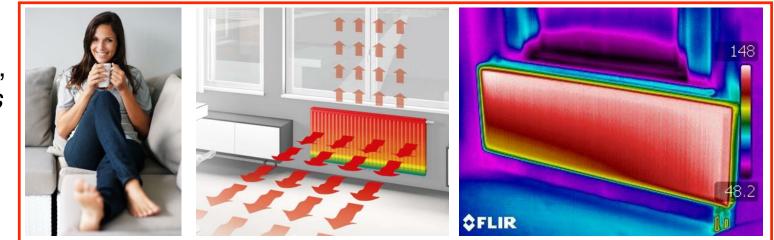
Many (most?) people believe that air temperature is the sole "proxy" for human thermal comfort.


Many people don't understand what is possible regarding the comfort delivered by their heating system, and assume that they must accept what they have.

courtesy of www.healthyheating.com

<u>Thermal comfort is achieved when the</u> <u>surrounding environment allows heat</u> <u>loss from the body to balance metabolic</u> <u>heat production</u> It's not just about delivering BTUs... It's about delivering COMFORT

The "**Btus in a box**" approach to comfort is very incomplete...



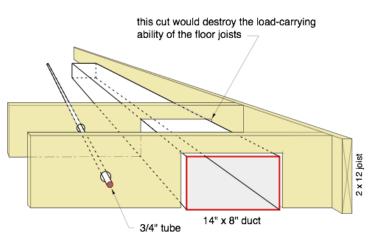
BTUs delivered - except during defrost...

Comfort delivered

When heat supply rate = heat loss rate, the *thermodynamics* necessary for stable interior temperature are satisfied...

Why hydronics?

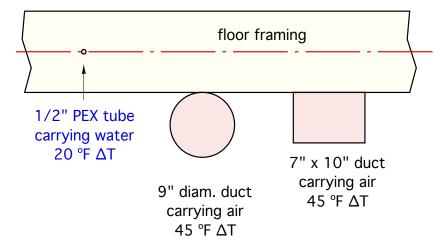
Water vs. air: Use the advantage nature has provided...



Material	Specific heat (Btu/lb/°F)	Density* (lb/ft ³)	Heat capacity (Btu/ft ³ /°F)
Water	1.00	62.4	62.4
Concrete	0.21	140	29.4
Steel	0.12	489	58.7
Wood (fir)	0.65	27	17.6
Ice	0.49	57.5	28.2
Air	0.24	0.074	0.018
Gypsum	0.26	78	20.3
Sand	0.1	94.6	9.5
Alcohol	0.68	49.3	33.5

$$\frac{62.4}{0.018} = 3467 \approx 3500$$

A given volume of water can absorb almost 3500 times as much heat as the same volume of air, when both undergo the same temperature change





Hydronics allows for minimally invasive installation

"Conduit" size required for 12,000 Btu/hr heat transfer rate

Hydronics & Renewable Energy

Modern hydronics is the "glue" holding together many thermally-based renewable energy systems.



Regardless of what solar collector, geothermal heat pump, or wood-fired boiler is selected, if the distribution system, controls, and heat emitters are not properly matched, that system will not perform well.

Why hydronics enhances renewable heat sources

- Unsurpassed comfort
- Easy to adapt to wide range of renewable heat sources
- Low temp. operation (high heat source efficiency)
- Very high *distribution efficiency*
- Thermal storage potential
- No building filled with refrigerant tubing (e.g., no VRF)
- Easy integration with existing (now "auxiliary") heat sources
- Very easy to zone to reduce loads
- Potential for thermal metering (ASTM E3137 now in place)

Hydronics provide superior DISTRIBUTION EFFICIENCY

each circulator requires 80 watts

distribution efficiency= $\frac{\text{rate of heat delivery}}{\text{rate of energy use by distribution equipment}}$

Example: Consider a system that delivers 120,000 Btu/hr at design load conditions using four circulators operating at 85 watts each. The distribution efficiency of that system is:

distribution efficiency= $\frac{120,000 \text{ Btu/hr}}{340 \text{ watts}} = 353 \frac{\text{Btu/hr}}{\text{watt}}$

Interpretation: Each watt of electrical power supplied to the distribution system delivers 353 Btu/hr from the heat source to where it's needed in the building.

Why is this import?

High efficiency hydronic heating systems should minimize fuel usage as well as the electrical energy needed for heat distribution.

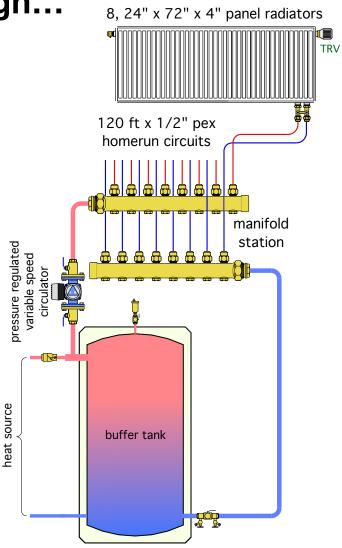
So is a distribution efficiency of 353 Btu/hr/watt good or bad?

To answer this you need something to compare it to.

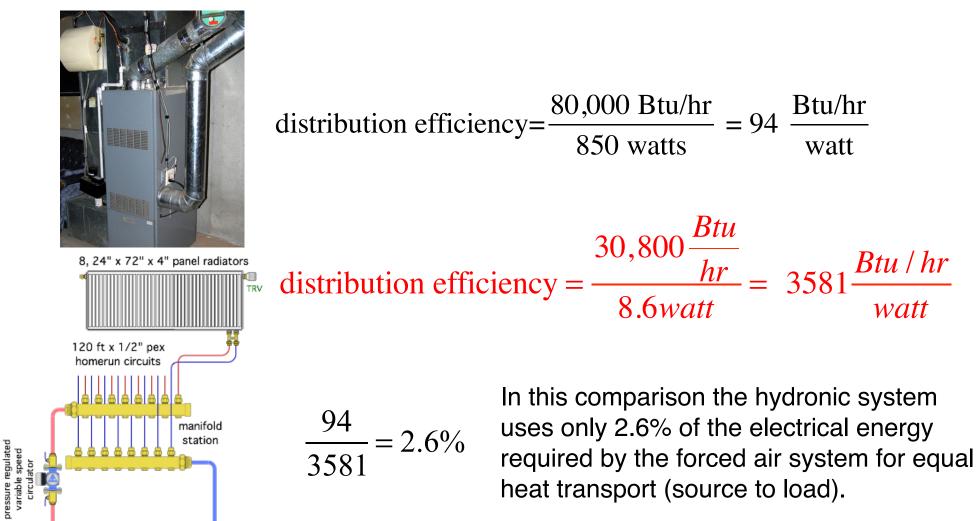
Suppose a furnace blower operates at 850 watts while delivering 80,000 Btu/hr through a duct system. It delivery efficiency would be:

distribution efficiency= $\frac{80,000 \text{ Btu/hr}}{850 \text{ watts}} = 94 \frac{\text{Btu/hr}}{\text{watt}}$

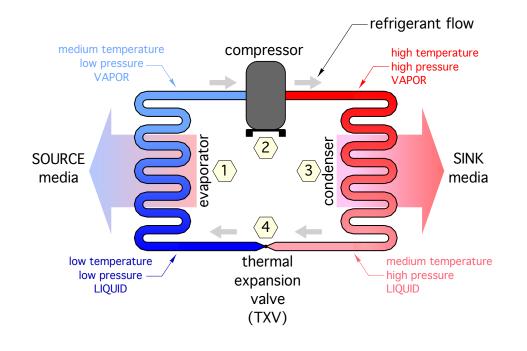
The previously assumed hydronic system had a distribution efficiency almost four times higher than the forced air system.

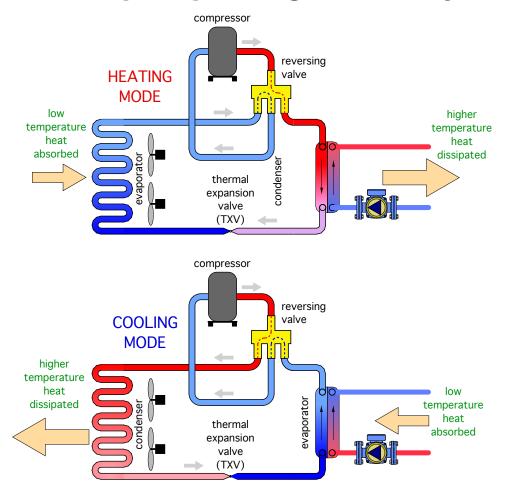

Water is vastly superior to air as a conveyor belt for heat.

With modern hydronic hardware and design methods (panel radiators, variable speed ECM circulator, homerun distribution system) the distribution efficiency has the potential to be **MUCH** higher...


What's possible with modern hydronic design...

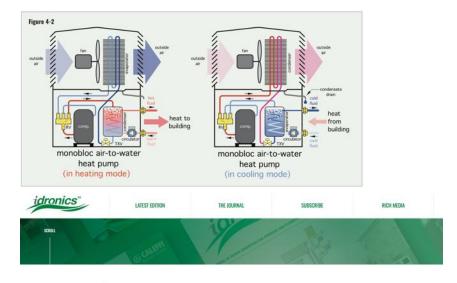
With good design and modern hardware it's possible to design a homerun distribution system for panel radiators that can supply 30,800 Btu/hr design load using only 8.6 watts of electrical power input to circulator!


The distribution efficiency possible with a well-designed hydronic system far exceeds that attainable with forced air systems


What is an air-to-water heat pump?

Heat pump "flavors" water-to-water "Ductless", "mini-split" air-to-air heat pump heat pump ANTER ANT water is the 4015 air is the building "conveyor belt" source of heat moving heat to flow the heat the building air-to-water heat pump

A non-reversible heat pump refrigeration cycle



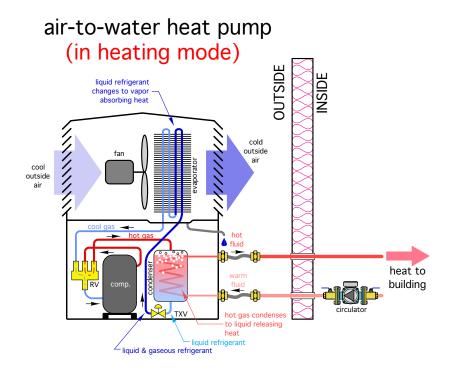
A reversible air-to-water heat pump refrigeration cycle

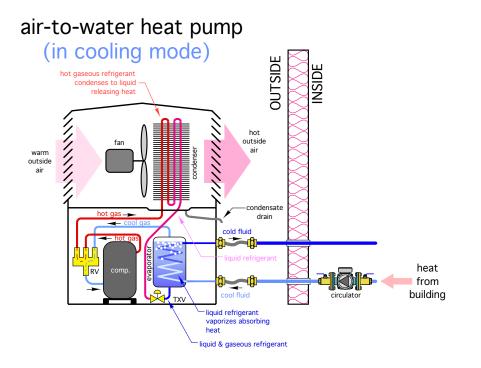
A recent issue of *idronics* dealt with air-to-water heat pumps

Understanding Air-To-Water Heat Pumps

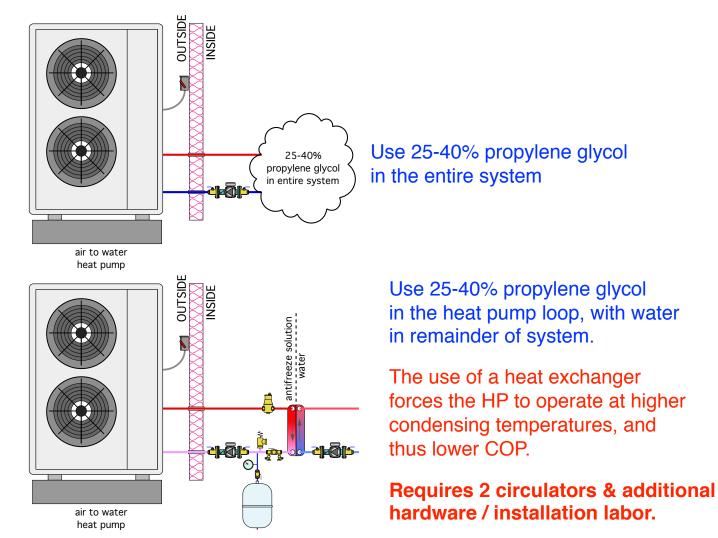
https://idronics.caleffi.com

Self-contained ("monobloc") air-to-water heat pumps





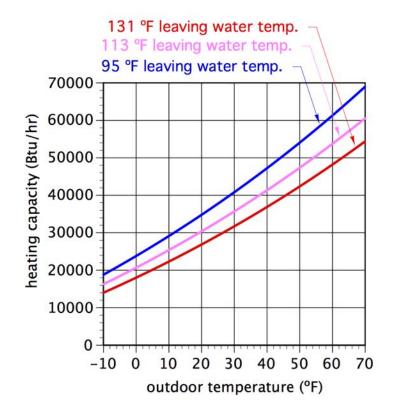
Internals of a monobloc air-to-water heat pump



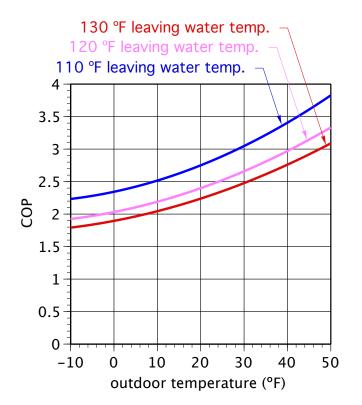
In heating mode: The heat pump extracts low temperature heat from outside air, and transfers it to a fluid stream (water or water & antifreeze) to be used by a hydronic distribution system. In cooling mode: The heat pump extracts low temperature heat from a fluid stream (chilling it), and dissipates that heat to outside air.

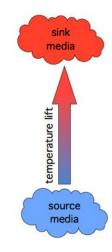
Self-contained ("monobloc") air-to-water heat pumps

- Pre-charged refrigeration system
- Some have internal circulator, others don't
- Should have freeze protection in North American applications

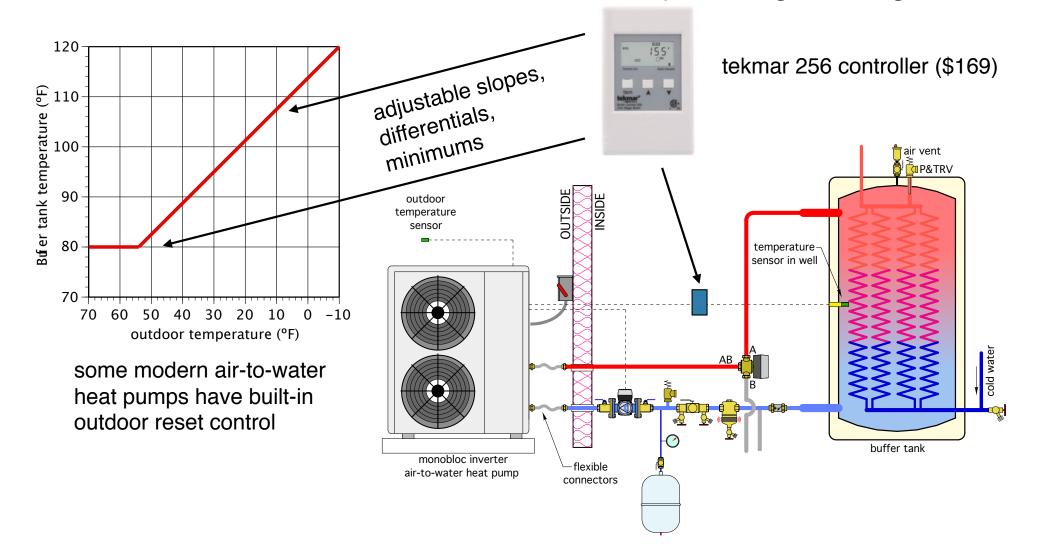


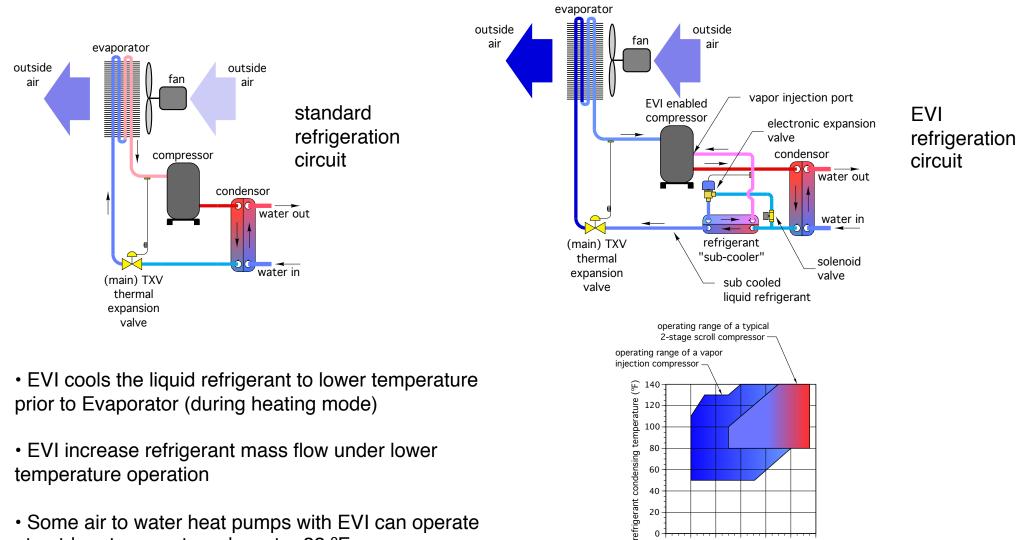
Split system air-to-water heat pump




Heating Performance

The heating capacity of most AWHPs decreases with increasing condenser temperature.


The COP also decreases with increasing condenser temperature.



The smaller the "temperature lift" between evaporator and condenser, the higher the heating capacity and COP.

Use outdoor reset control for buffer tank temp. during heating season

Enhanced Vapor Injection (EVI) Systems

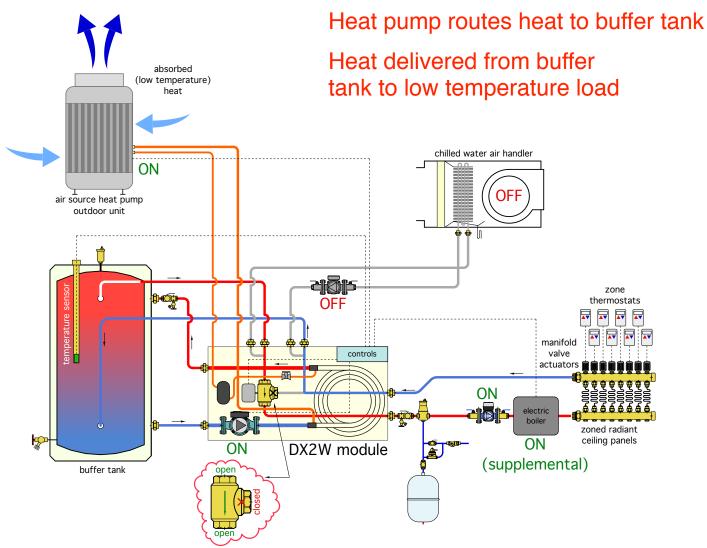
-40 -20

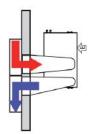
-60

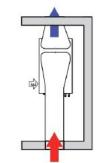
0 20 40 60

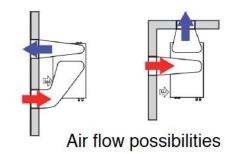
refrigerant evaporating temperature (°F)

at outdoor temperature down to -22 °F

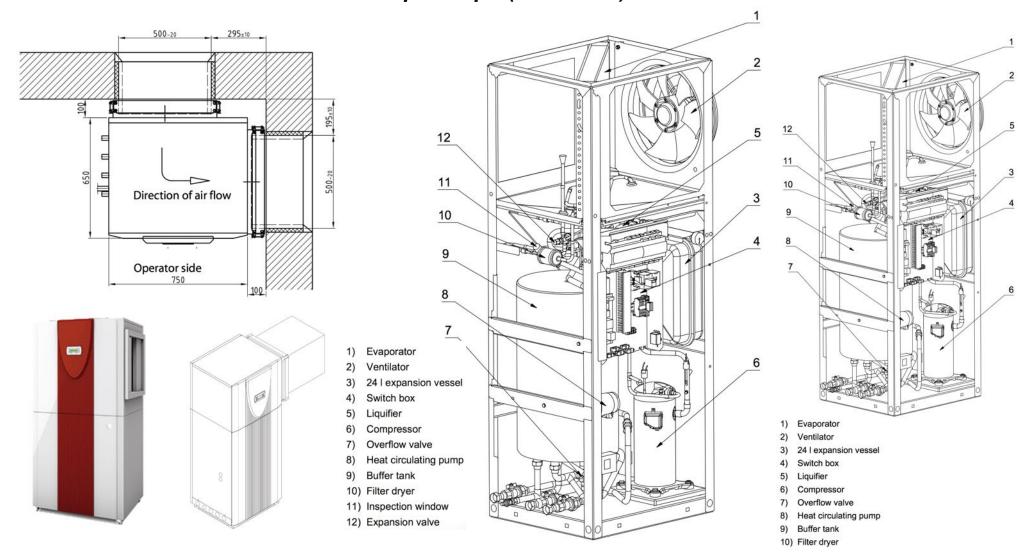

New Concepts for air-to-water heat pumps Bring your own condenser... ThermAtlantic Energy Products, Inc.


Bring your own condenser... Heating mode




Interior air-to-water heat pump

Advantages:


- No outdoor equipment beyond air intake and discharge grills
- · Less potential to freeze water containing within the heat pump
- Less environmental weathering effect on equipment
- Reduced potential for debris on heat transfer coil surfaces

Disadvantages:

- Require more interior space
- Brings compressor sound within the structure
- · Requires careful coordination with building design to ensure that adequately
- sized ducting can be accommodated, and terminated above snow level.

image courtesy of HotJet.cz

Interior air-to-water heat pump (corner)

Currently available air-to-water heat pumps:

Aermec (Residential & Commercial AWHPs)

Arctic heat pump (Residential / light commercial AWHPs)

Chiltrix (Residential / light commercial AWHPs)

Electro Industries (Residential / light commercial AWHPs)

Enertech Global (Residential / light commercial AWHPs)

Multiaqua (Residential / light commercial AWHPs)

Nordic (Residential / light commercial AWHPs)

SpacePak (Residential / light commercial AWHPs)

ThermAtlantic (Residential / light commercial AWHPs)

Anticipated products:

Emmeti (Residential / light commercial AWHPs)

GREE (Residential / light commercial AWHPs)

Group Atlantic (Residential / light commercial AWHPs)

Mitsubishi (Residential & Commercial AWHPs)

Stiebel Eltron (Residential / light commercial AWHPs)

Taco (Residential / light commercial AWHPs)

Why the North American air-to-water heat pump market will grow Global air-to-water heat pump market:

In July 2020, the Japanese HVAC publication JARN reported the pace of air-to-water heat pump adoption, globally, in 2019, increased at an annualized rate of **25.8%**, reaching a demand of **3.42 million units**.

China accounted for just over 2 million of these units. Around 600,000 units were attributed to the European market, lead by France, Germany and Italy.

Many of these heat pumps were installed as part of phase out plans for oil-fired boilers and low efficiency gas-fired boilers.

Asian manufacturers [Daikin, Mitsubishi, Fujitsu, Hitachi, Samsung, LG, Gree, Toshiba] German manufacturers [Dimplex, Wolf, Viessmanm, Bosch, Vaillant] Canadian manufacturers [ThermAtlantic, Nordic, Arctic, Aermec]

* Source: JARN July 2020,

1. Rapidly growing interest in Net Zero houses:

- Typical net zero house has a low loss thermal envelope, and a sizable solar photovoltaic array.
- Net metering laws where they exist allow owners of photovoltaic systems to sell surplus electrical power back to the utility at full retail rate.
- North America held the largest market share for net-zero construction accounting for 79.1% in 2018. The North American market is projected to grow at a CAGR of 16.0% during the period 2019-2024.

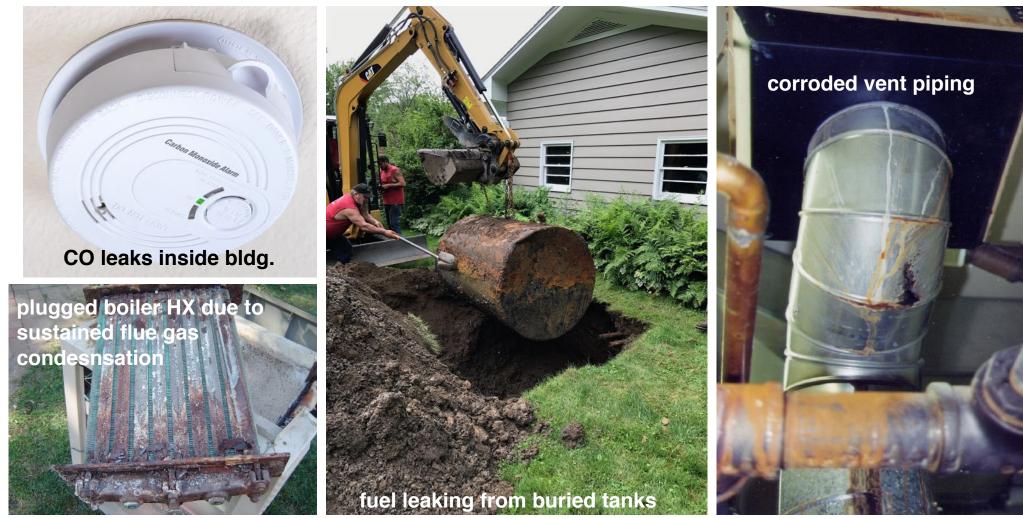
Trends supporting an emerging market for air-to-water heat pumps in North America *2. Decreasing heating loads:*

- Pre-1990 houses design load where typically 25-40 Btu/hr/ft²
- Modern low energy houses have typical design loads of 10-15 Btu/hr/ft²

Consider a 1800 ft² house at 10 Btu/hr/ft² design load = 18,000 Btu/hr (5.3kw) (at design!)

Often difficult to find a boiler small enough to avoid oversizing, and short cycling under partial loads.

gas-fired modulating / condensing boiler	boiler model	MAXIMUM HEAT OUTPUT (Btu/hr)	MINIMUM HEAT OUTPUT (Btu/hr)
	model 55	51,000	7,700
	model 85	79,000	7,900
	model 110	102,000	10,200
	model 155	144,000	14,400
	model 200	185,000	18,400
	model 285	264,000	26,400
	model 399	377,000	75,600


Trends supporting an emerging market for air-to-water heat pumps in North America 3. Eliminating gas eliminates the basic service charge for a gas meter

GAS RESIDENT			
Dec 19 reading (Actu Nov 17 reading (Actu		9524 -9349	
Total Usage CCF 32	days	175	
Delivery Charges			
Basic Service Charge			\$20.00
Includes	3CCF	@ 0.000¢ each	\$00.00
Next	47 CCF	@ 65.285¢ each	\$30.68
Next	125 CCF	@ 62.835¢ each	\$78.54
Month Gas Adj		@ 12.22455¢ each	\$21.39
NY Assessment	175 CCF	@ 0.96528¢	\$1.69
RDM Adjustment	175 CCF	@ 0.72803¢	\$1.27
SBC Charge	175 CCF	@ 0.51500¢	\$0.90
Government surchar			\$5.22
Total Delivery Cl	narges		\$159.69
Merchant Function C	hg 175	CCF @ 2.9453¢	\$5.15
Government surchar	ges - Delivery		\$0.17
Merchant Function	Charges		\$5.32
Gas Supply Chg	175	CCF @ 33.00655¢	\$57.75
Government surchar	ges - Commodity	1	\$0.75
Total Supply Charges			\$58.51
CURRENT GAS	CHARGES		\$223.52

In some low energy houses the basic service charge could exceed the cost of purchased natural gas.

Trends supporting an emerging market for air-to-water heat pumps in North America 4. Safety / liability issues associated with fossil fuels

5. The geothermal heat pump industry is highly dependent on subsidies:

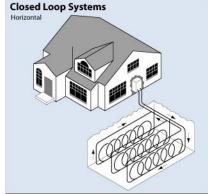
https://www.geoexchange.org/news/ 50% decline in US residential GHP shipments during 2017, after original federal tax credit expired 12/31/16.

This tax credit was reinstated in Feb 2018, retroactive to its 12/13/16 expiration.

Do you want to build your business model on the assumption that subsidies will always be there?

current credits

6. Air-to-water heat pumps are <u>significantly less expensive</u> to install compared to geothermal heat pumps:


This is especially true if vertical boreholes are required for the earth loop.

In my area, these holes cost about \$3,000+ per ton for drilling, pipe insertion, and grouting. Additional cost is incurred for connecting multiple vertical piping loops, and routing piping back to the location of the heat pump.

In simplest terms: Air-to-water heat pumps eliminate the geothermal loop

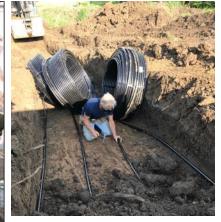
geothermal heat pump typical installed cost = \$X

air-to-water heat pump typical installed cost = \$(30% to 50%)X

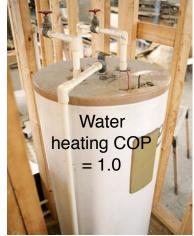
7. Air-to-water heat pumps are significantly less disruptive to install compared to geothermal heat pumps:

Horizontal earth loops require large land areas and major excavation.

In my area, vertical earth loops cost about \$3,000+ per ton for drilling, pipe insertion, and grouting. Additional cost is incurred for connecting multiple vertical piping loops, and routing piping back to the location of the heat pump. The drill "tailings" usually have to be removed from the site.



Replacement of any affected pavements or landscaping also needs to be factored into the cost of installing a geothermal heat pump system.


8. As home space heating loads get smaller, the domestic water heating load becomes an increasingly higher percentage of the total annual heating energy requirement.

Some estimates put the DHW load at 25-30 percent of the total annual energy requirement in a well insulated modern home.

Most ductless mini-split heat pumps cannot provide domestic water heating, but a properly configured air-to-water heat pump can.

A standard electric water heater providing domestic water heating in a situation where the heat pump cannot, delivers heat at a COP of 1.0. If that energy was instead attained through an air-to-water heat pump, it could be delivered at a COP averaging perhaps 2.5 over the year. For a family of 4, needing 60 gallons per day of water heated from 50 to 120 °F, and assuming electrical energy priced at \$0.12 per KWHR, the *difference* in annual domestic water heating cost between these options is \$270.

Several trends suggest that a growing market will emerge for air-to-water heat pumps.

9. The high COP cited for some geothermal heat pumps doesn't include the power required to move flow through the earth loop.

Example of a commercially available earth loop flow center. 4, UP26-150 circulators (370 watts each) = 1,480 watts pumping power input.

The ANSI 13256-2 standard for geo heat pump COP includes an estimate for the power required to move flow through the heat pump - BUT DOESN'T INCLUDE ANY ALLOWANCE FOR THE EARTH LOOP PUMPING POWER.

The high flow and head required in some geothermal earth loops requires substantial circulator power.

Example: A specific water-to-water geothermal heat pump has the follow listed performance information: Earth loop entering temperature = 30° F Entering load water temperature = 100° F Flow rate (both evaporator and condenser) = 9 gpm Heating capacity = 27,700 Btu/hr Electrical power input = 2370 watts

Based on a typical earth loop, the pumping requirement is 10.5 gpm at 35.5 feet of head. This equates to an estimated pump input of 287 watts.

$$COP_{\text{HP only}} = \frac{27700 \frac{Btu}{hr}}{(2.37kw) \left(\frac{3413 \frac{Btu}{hr}}{kw}\right)} = 3.42 \qquad COP_{\text{HP +loop pump}} = \frac{27700 \frac{Btu}{hr}}{(2.37kw + 0.287kw) \left(\frac{3413 \frac{Btu}{hr}}{kw}\right)} = 3.05$$

Nominal 11% drop in "net" COP

10. The "COP gap" between geothermal and low ambient air source heat pumps is closing.

You don't pay for COP! (you pay for kilowatt hours)

Example: A house has a design heating load of 36,000 Btu/hr when the outdoor temperature is 0 °F, and the indoor temperature is 70 °F. The house is located in Syracuse, NY with 6,720 annual heating °F•days. The estimated annual space heating energy use is 49.7 MMBtu. Assume that one heat pump option has a seasonal average COP of 3.28. The other heat pump has a seasonal COP of 2.8.

$$S = load \left[\frac{1}{COP_L} - \frac{1}{COP_H} \right] = 49.7 \left[\frac{1}{2.8} - \frac{1}{3.28} \right] = 2.6 MMBtu / year$$

The cost savings associated with an energy savings of 2.6 MMBtu/hr depends on the cost of electricity. For example, if electricity sells at a flat rate of \$0.13 / KWHR, the cost savings would be:

Cost savings =
$$\frac{2.6MMBtu}{year} \left(\frac{292.997KWHR}{1MMBtu}\right) \left(\frac{\$0.13}{KWHR}\right) = \$99 / year$$

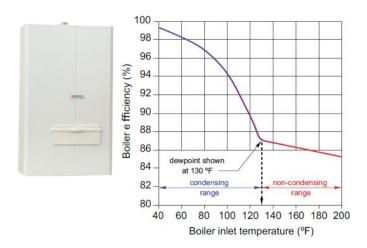
Can the added cost of the higher COP heat pump be recovered in a reasonable time?

11. Boilers don't provide cooling

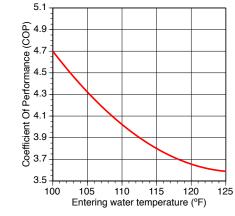
- This has long been an "Achilles heel" for hydronics
- Rather than tell prospective "heating" customers that they need an entirely separate system if the want cooling, heat pumps offer the opportunity to it in a single system.
- Existing hydronic systems can potentially be upgraded to include cooling.
- New hydronic systems can be designed to include cooling.

Several approaches:

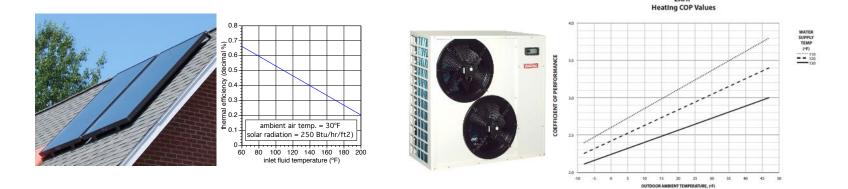
- single zone cooling / multi-zone heating
- zoned air handlers
- zoned wall consoles / cassettes
- single coil with zoned fans
- radiant panel cooling

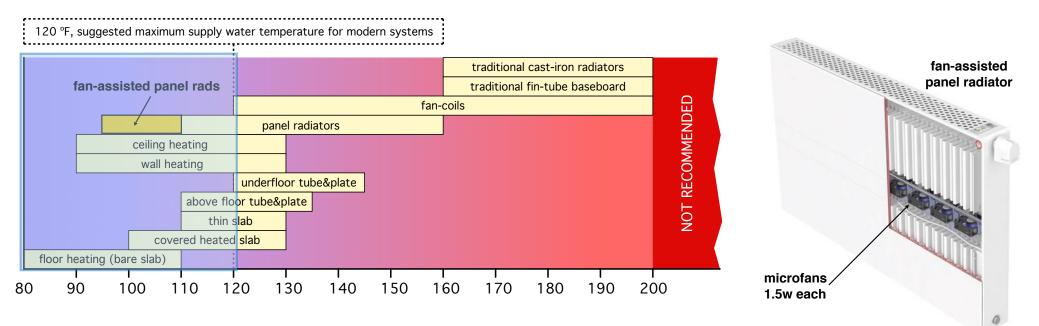


pre-insulated 3/4" PEX



Importance of low temperature distribution systems

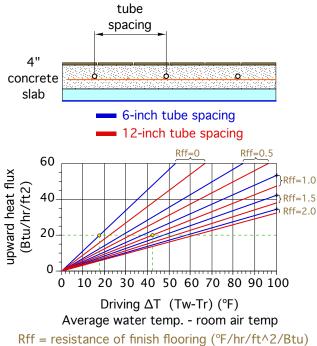

Heat sources such as condensing boilers, geothermal & ATW heat pumps, and solar collectors all benefit from low water temperature operation.


LAHP

A suggested criteria: Design all hydronic space heating systems so that they can deliver design heating load using a water temperature no higher than 120 °F - even lower when practical.

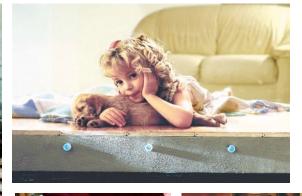

This "Future-proofs" your hydronic distribution system

This is well within the reasonable efficiency range of modern hydronic heat sources such as geothermal water-to-water heat pumps, air-to-water heat pumps, biomass boiler systems, and mod/con boilers



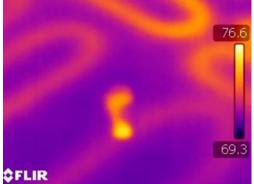
Don't feel constrained to select heat emitters based on "traditional" supply water temperatures...

Slab-on-grade floor heating



Is radiant floor heating **always** the answer?

"Barefoot friendly" floors...



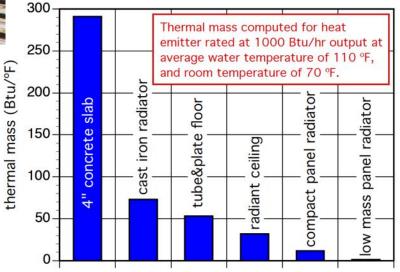
Is radiant floor heating **always** the answer?

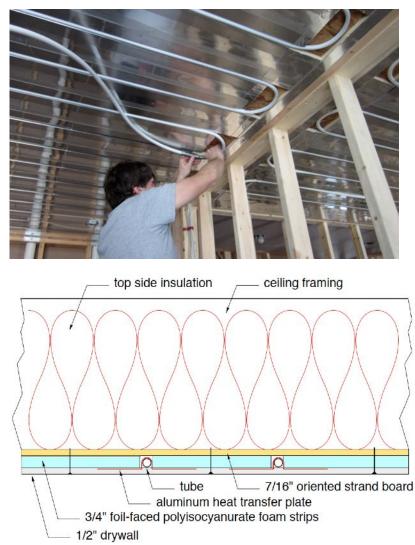
Consider a 2,000 square foot well insulated home with a design heat loss of 18,000 Btu/hr. Assume that 90 percent of the floor area in this house is heated (1800 square feet). The required upward heat flux from the floor at design load conditions is:

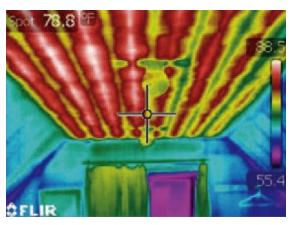
heat flux= $\frac{\text{design load}}{\text{floor area}} = \frac{18,000 \text{ Btu/hr}}{1,800 \text{ square feet}} = 10 \frac{\text{Btu}}{\text{hr} \cdot \text{ft}^2}$

Tf = average floor surface temperature ($^{\circ}F$) $T_f = \frac{q}{2} + T_r$ $T_r = \text{reaverage floor surface term}$ $T_r = \text{room air temperature (°F)}$ q = heat flux (Btu/hr/ft²)

To deliver 10 Btu/hr/ft² the floor only has to exceed the room temperature by 5 degrees F. Thus, for a room at 68 degrees F the average floor surface temperature is only about 73 degrees F.


This is not going to deliver "barefoot friendly floors" - as so many ads for floor heating promote.

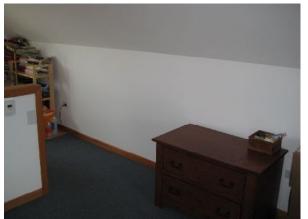

A comparison of THERMAL MASS for several heat emitters: All heat emitters sized to provide 1000 Btu/hr at 110 °F average water temperature, and 70 °F room temperature:

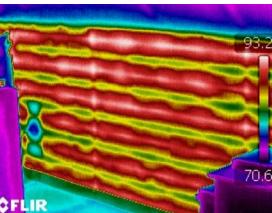

Low thermal mass heat emitters are generally preferred in low load buildings - due to fast response characteristic

Site built radiant CEILINGS...

Thermal image of radiant ceiling in operation

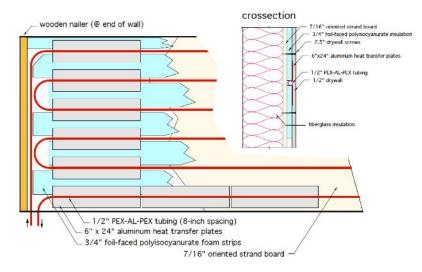
Heat output formula:


$$q = 0.71 \times (T_{water} - T_{room})$$


Where:

 $\begin{array}{l} Q = heat \mbox{ output of ceiling (Btu/hr/ft^2)} \\ T_{water} = average \mbox{ water temperature in panel (°F)} \\ T_{room} = room \mbox{ air temperature (°F)} \end{array}$

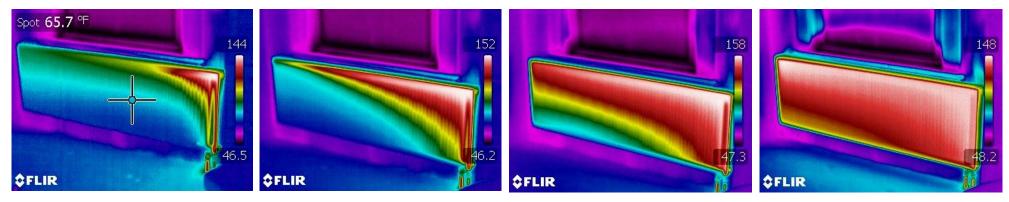
Site built radiant WALLS...



- completely out of sight
- · low mass -fast response
- reasonable output at low water temperatures
- stronger than conventional drywall over studs
- don't block with furniture

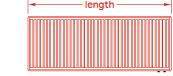
Heat output formula (for above construction):

$$q = 0.8 \times (T_{water} - T_{room})$$


Where:

 $\begin{array}{l} Q = heat \mbox{ output of wall (Btu/hr/ft^2)} \\ T_{water} = average \mbox{ water temperature in panel (°F)} \\ T_{room} = room \mbox{ air temperature (°F)} \end{array}$

Hydronic heat emitters options for low energy use houses **Panel Radiators**


Panel Radiators respond quickly...

From setback to almost steady state in <u>4 minutes</u>...

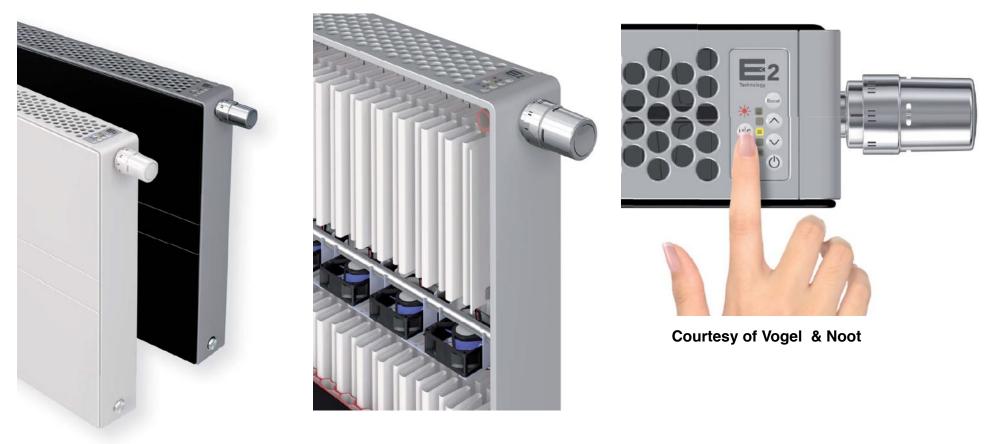
Hydronic heat emitters options for low energy use houses Panel Radiators

• Adjust heat output for operation at lower water temperatures.

Heat output ratings (Btu/hr) at reference conditions: Average water temperature in panel = $180^{\circ}F$ Room temperature = $68^{\circ}F$ temperature drop across panel = $20^{\circ}F$

			1 water plate panel thickness					
7 0			16" long	24" long	36" long	48" long	64" long	72" long
	L L	24" high	1870	2817	4222	5630	7509	8447
	reight	20" high	1607	2421	3632	4842	6455	7260
	<u>م</u>	16" high	1352	2032	3046	4060	5415	6091
0						·	·	

	1_{\neg}							
	0.9	CF	= 0.001	882(Δ 1	$(1.33)^{1.33}$			
£	0.8							
ñ	0.7							
Correction factor (CF)	0.6				/	/	reference condition	
n fa	0.5						<u>8</u>	
ctio	0.4						erenc	
orre	0.3						refe	
ŭ	0.2		/					
	0.1							
	0				ΔΤ	=112 °F-		
	0	2	0 4	0 6	60 8	30 1	00 12	0
	Δ٦	(ave	water	temp	- roor	n air te	emp) (°l	F)
		Av	e wate	ference r temp air tem	. in par	ition: nel = 18 re = 68	30°F °F	

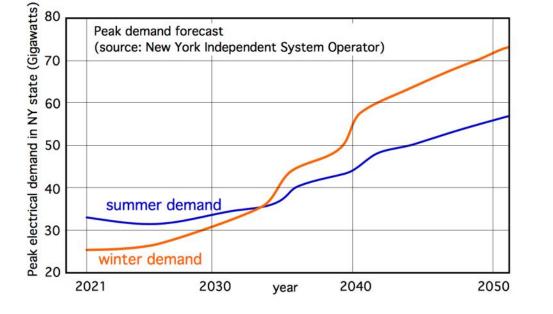

2 water plate panel thickness 16" long 24" long 36" long 64" long 72" long 48" long 24" high 3153 4750 7127 9500 12668 14254 2 water plates 20" high 2733 4123 6186 8245 10994 12368 2301 3455 9212 10363 16" high 5180 6907 1491 2247 3373 4498 5995 6745 10" high 0

		3 wate	3 water plate panel thickness				
0		16" long	24" long	36" long	48" long	64" long	72" long
	24" high	4531	6830	10247	13664	18216	20494
r plates	20" high	3934	5937	9586	11870	15829	17807
water	16" high	3320	4978	7469	9957	13277	14938
ő	10" high	2191	3304	4958	6609	8811	9913

As an approximation, a panel radiator operating with an average water temperature of 110 °F in a room room maintained at 68 °F, provides approximately 27 percent of the heat output it yields at an average water temperature of 180 °F.

Fan-assisted Panel Radiators

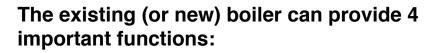
- Wider availability in Europe
- Designed to operate with 104 °F water
- Expect more offerings in North America


What about retrofitting existing hydronic systems in buildings transitioning to electric HVAC?

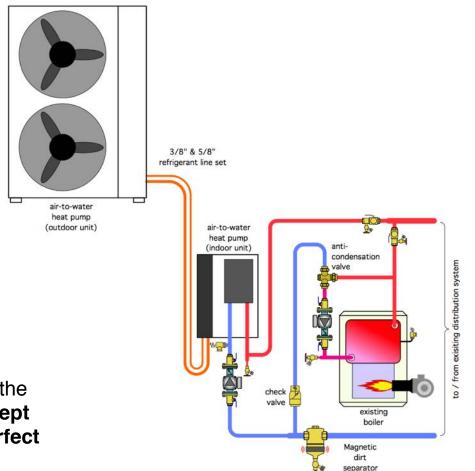
A rational path toward electrification

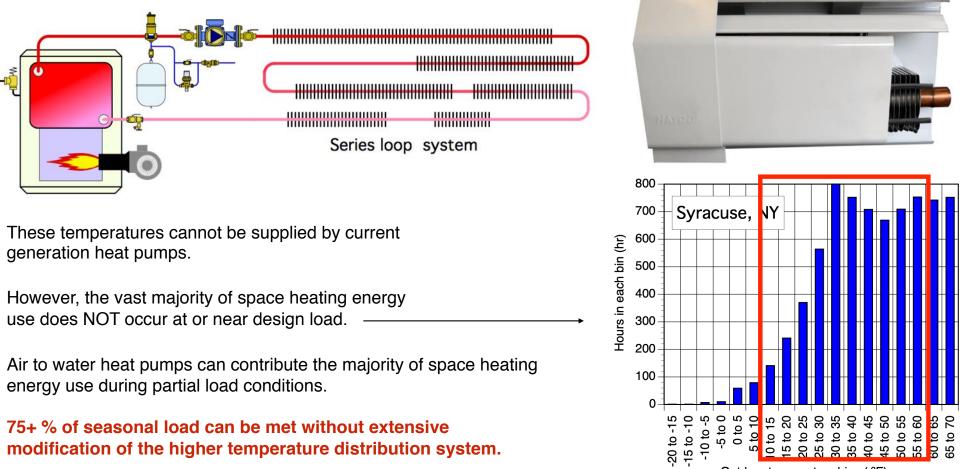
1. Can the utility grids handle rapid and extensive shift from all fossil fuels to electricity?

2. Should all existing hydronic heat sources operating on fossil fuel be immediately scrapped and replaced by heat pump?



Hydronics technology can enable a rational transition...


Don't write off existing (or new) boilers, in combination with air-to-water heat pumps


- 1. Supplemental heat during extreme cold weather.
- 2. Backup heating if heat pump is down for servicing.

3. Backup heat powered from a *small* generator during a utility outage (400 watts to operate boiler vs. 4000 watts to operate heat pump).

4. One of the biggest challenges to electric utility planners is how to meet peak winter loads if many buildings have air-source heat pumps with electric resistance backup. Having a non-electric boiler in the system reduces this issue. This "dual fuel" concept needs to be promoted, and hydronics is the perfect "media" to implement it.

Existing hydronic distribution systems are usually designed for high temperature water (160 to 200 °F at design load)

Outdoor temperature bins (°F)

modification of the higher temperature distribution system.

NYSERDA is current funding development of an air-to-water heat pump simulator

Automatic Calculations ON Checked		Current Date	Apply Defrost Data				Go to Help Sheet	_
	Inputs	2/4/22		Use Attenuite Heat Pump	Inputs		Outputs	s
BUILDING LOAD INPUTS		Range	LOCATION OF STUDY	FINANCIAL INPUTS		Range		
Design Heating Load Building	g 40,000 Btu/hr	10,000 to 200,000	O Albany	Installed cost of air-to-water heat pump system	\$20,000	\$5,000 - \$60,000	HEATING OUTPUTS for air-to-water heat pump	
Inside air temperature required	1 70 °F	60 to 80	O Binghamton	% Downpayment applied installation cost	0 %	% of IC, 0-100%	Annual building space heating energy required= 87.2	26 MMBtu
Outdoor temperature at design loa	d 2 'F	-10 to 40	O Brooklyn	% Upfront rebate to deduct from installed cost	0 %	0 to 50% of IC	Heating season space heat & DHW energy supplied by air-to-water heat pump= 96.7	71 MMBtu
Average hourly internal heat gain	n 3,413 Btu/hr	0 to 17,000	O Buffalo	Term of loan (if any) to finance system installation	5 Years	0 to 20 years	Heating season space heat & DHW energy supplied by auxiliary heat source= 3.32	24 MMBtu
Space heating supply water temperature required at design loan	d 100 °F	100 to 180	O Giens Falls	Design life of heat pump system	15 Years	10 to 25 years,	Annual hours of air-to-water heat pump HEATING operation= 2,208	1.4 hrs
			O Jamestown	Cost of electricity	0.15 \$/kwhr	0.03 to 0.50 \$/kwhr	Heating season average COP of air-to-water heat pump = 3.1	10
HEATPUMP SELECTION			O Lake Placid	Annual % increase in electrical cost	1.0 %	0 to 5 %		
SpacePak LAHP air to water heat pump			O Massena	Annual % interest earned on capital if downpayment remained invested	1.0 %	0 to 5 %	COOUNG OUTPUTS for air-to-water heat pump	
O Enertech AV060 air to water heat pump			O Old Forge	% Income tax rate of owner	25.0 %	0 to 40 %	Annual building cooling energy required = 1.05	56 MMBtu
O Nordic ATW-65 air to water heat pump	1		O Plattsburg	% Interest rate for loan	5.0 %	0.5 to 15 %	Annual cooling energy supplied by air-to-water heat pump = 1.05	56 MMBtu
	1		O Rochester				Annual cooling energy supplied by supplemental cooling source = 0.00	00 MMBtu
			Syracuse	ALTERNATE HEAT PUMP THERMAL INPUTS		Range	Annual hours of air-to-water heat pump cooling operation = 23	3.0 hrs
			O Utica	Alternate heat pump seasonal average COP	3.0	1.5 to 4.0	Seasonal average EER of air-to-water heat pump = 11.0	08 Btu/hr/watt
			O Watertown	Alternate heat pump seasonal average SEER	14 Btu/hr/watt	10 to 22		
				Supplemental cooling source SEER	14 Btu/hr/watt	10 to 22	FINANCIAL OUTPUTS for air-to-water heat pump	and a second
	1			% of space heating load covered by alternate heat pump	95 %	75 to 100	Total building heating cost over system design life = \$24,420.1	14
				% of cooling load covered by alternate heat pump	100 %	75 to 100	Total building cooling cost over system design life = \$230.1	14
	-6.				N		Downpayment = \$0.0	00
ENTER HEAT PUMP CIRCULATOR POWER	2 2	Range		ALTERNATE HEAT SOURCE FINANCIAL INPUTS		Range	Monthly loan payment = \$377.4	42
Electrical power required by heat pump circulato	r 150 watts	0 to 500		Installed cost of alternate heat pump system	\$20,000	\$5,000-\$60,000	Total owning & operating cost over system design life = \$47,295.7	75
				% downpayment on alternate heat pump system	50 %	% of IC, 0-100%		
DOMESTIC WATER HEATING INPUTS	10 M	Range		Rebate (if any) on alternate heat pump system (% of installed cost)	0.0 %	0 to 50%	ALTERNATE HEAT PUMP FINANCIAL OUTPUTS	and a second
Galions per day domestic hot water require	d 60 gallons	0 to 120		Term of loan (if any) to finance alternate heat pump system	5 years	0 to 20	Total building heating cost over system design life = \$19,549.3	34
Required domestic hot water delivery temperature		100 to 140		% Interest rate of loan (if any) to finance alternate heat pump system	5 %	1 to 10%	Total building cooling cost over system design life = \$182.1	11
Seasonal average cold water temperature at site	e 50 °F	40 to 65		Design life of alternate heat pump system	15 years	10 to 25	Downpayment = \$10,000.0	00
							Monthly loan payment = \$188.7	/1
BUILDING COOLING LOAD INPUTS		Range					Total owning & operating cost over system design life = \$36,813.6	51
Inside air temperature required for cooling comfor	t 75 'F	72 to 82						
Chilled water temperature required by cooling co	a 50 °F	40 to 60						
Sensible heat ratio	0.70	0.60 to 0.90						
SEER of supplemental cooling source	e 14.0 Stu/hr/watt	7 to 22					ماللان بريد والانتجاب والمتعاوم والمتعاد الم	

Detailed models for heat pumps, hydronic heat emitters, and building loads.

Uses an "aggressive" model for derating capacity and COP based on defrosting.

Simulates specific air-to-water heat pumps in a range of NYS climates.

Allows input for domestic water heating load, as well as space heating and cooling loads. Allows comparison with other heat pump options.

Here are some results

location	ALBANY	BROOKLYN	PLATTSBURG
design heating load (Btu/hr)	54,000	41,831	59,327
electric cost (\$/kwhr)	\$0.12	\$0.21	\$0.05
cost of AWHP	\$15,000	\$18,000	\$15,000
cost of AAHP	\$9,500	\$11,400	\$9,500
assumed ave COP of AAHP	2	2.2	2.0
ave COP of AWHP (180°F water @ design)	2.64	2.89	2.70
ave COP of AWHP (140 °F water @ design)	2.8	3.06	2.78
ave COP of AWHP (30% load reduction allowing 147°F water @ design load)	2.74	3.05	2.75
ave COP of AWHP (30% load reduction & 60 GPD DHW	2.79	3.08	2.76
% of space heat & DHW load covered by AWHP, no modification of hydronic system or load	84.2%	84.0%	81.0%
% of space heat & DHW load covered by AWHP (w/ 30% load reduction & 60 GPD DHW	96.3%	95.8%	97%
15 yr life cycle O&O cost of AWHP assuming 30% load reduction & 60 GPD of DHW	\$30,481	\$37,356	\$20,451
15 yr life cycle O&O cost of AAHP assuming 30% old reduction & 60 GPD of DHW	\$33,723	\$43,294	\$18,488

The house modeled was based on 1970s vintage thermal envelope, 1800 square foot house with design load of 30 Btu/hr/ft².

The hydronic distribution system was assumed to be fin-tube baseboard with a supply water temperature requirement of 180 °F at design load.

the house were adjusted based on the outdoor design temperature so that the same thermal envelope is being simulated in all three locations.

The air-to-water heat pump used was SpacePak LAHP 048

Based on these simulations...

location	ALBANY	BROOKLYN	PLATTSBURG
design heating load (Btu/hr)	54,000	41,831	59,327
electric cost (\$/kwhr)	\$0.12	\$0.21	\$0.05
cost of AWHP	\$15,000	\$18,000	\$15,000
cost of AAHP	\$9,500	\$11,400	\$9,500
assumed ave COP of AAHP	2	2.2	2.0
ave COP of AWHP (180°F water @ design)	2.64	2.89	2.70
ave COP of AWHP (140 °F water @ design)	2.8	3.06	2.78
ave COP of AWHP (30% load reduction allowing 147°F water @ design load)	2.74	3.05	2.75
ave COP of AWHP (30% load reduction & 60 GPD DHW	2.79	3.08	2.76
% of space heat & DHW load covered by AWHP, no modification of hydronic system or load	84.2%	84.0%	81.0%
% of space heat & DHW load covered by AWHP (w/ 30% load reduction & 60 GPD DHW	96.3%	95.8%	97%
15 yr life cycle O&O cost of AWHP assuming 30% load reduction & 60 GPD of DHW	\$30,481	\$37,356	\$20,451
15 yr life cycle O&O cost of AAHP assuming 30% old reduction & 60 GPD of DHW	\$33,723	\$43,294	\$18,488

• The air-to-water heat pump is providing 84 to 97% of the seasonal space heating + DHW energy, even using an unmodified "high temperature" baseboard distribution system.

• Adding heat emitters to lower design load water temperature from 180 °F to 140 °F improves seasonal COP about 6%.

• Reducing the design load by 30% through envelope improvements, which allows design load water temperature to drop from 180 to 147°F improves seasonal COP 4-6%.

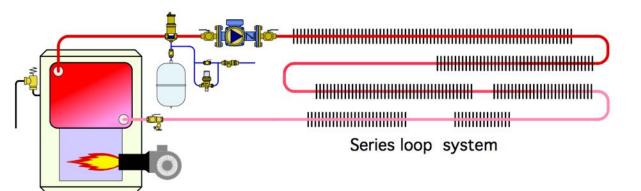
• Reducing the design load by 30%, which allows design load water temperature to drop from 180 to 147°F and including 60 GPD of domestic water heating (50-120°F) increases seasonal COP 5-7%

• 15 year life cycle total owning and operating cost of the air-to-water heat pump system is competitive with that of an air-to-air heat pump combined with electric resistance domestic water heating.

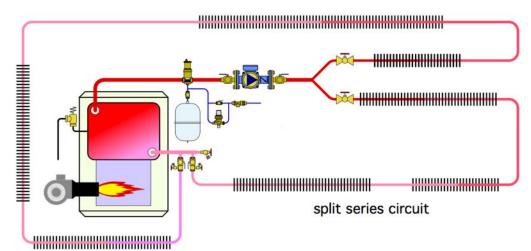
• Looking forward - using a low ambient air-to-water heat pump in a low energy building envelope is likely to show seasonal COPs of 3.0 or higher.

Lowering water temperatures in existing hydronic systems

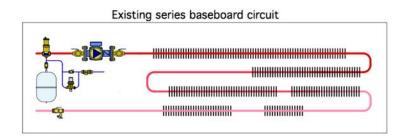
Two ways to reduce the supply water temperature of any hydronic heating system:

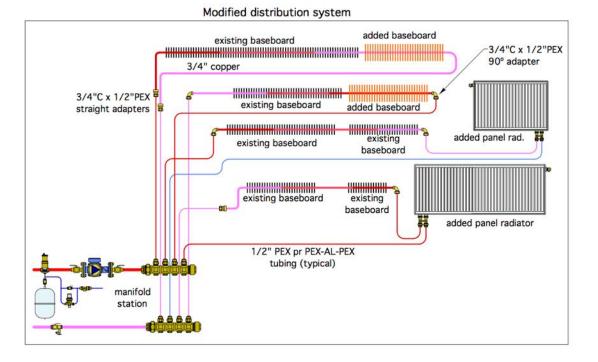

1. Reduce the design load of the building envelope through improvements such as added insulation, better windows and reduced air leakage.

2. Add heat emitters to the existing system.


Combinations of these two approaches are also possible.

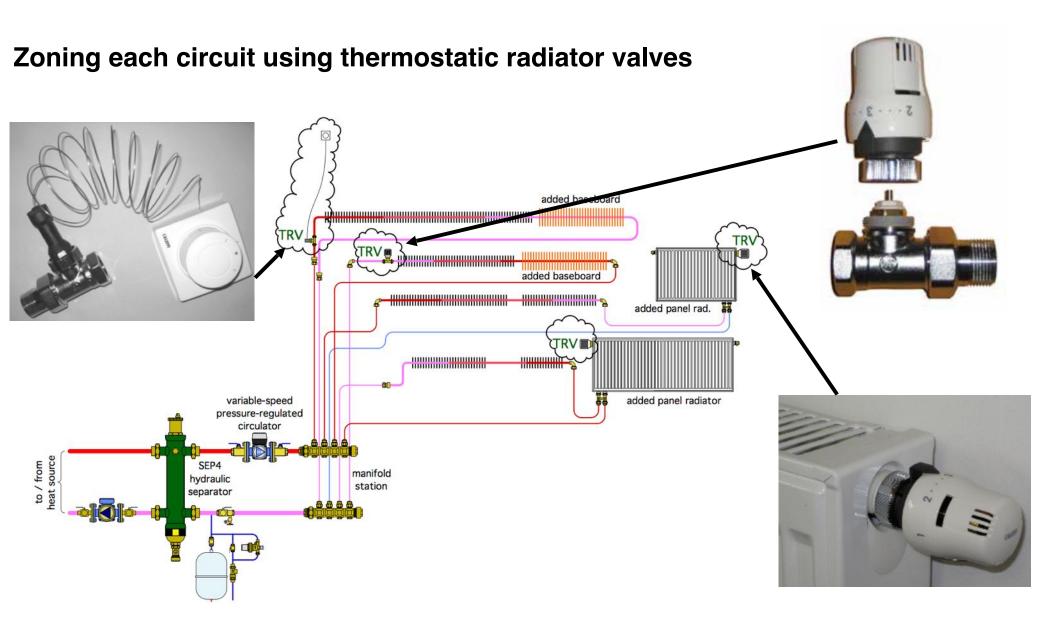
Retrofitting existing high temperature distribution systems



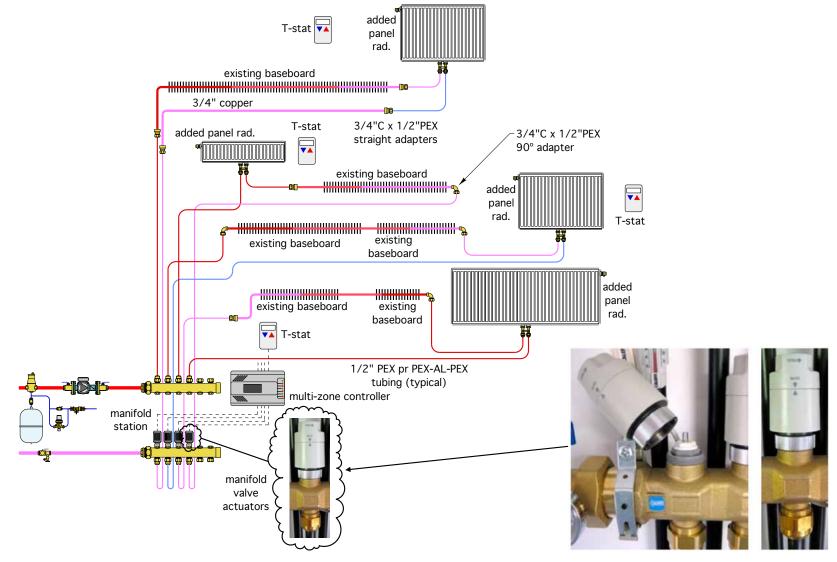

Common piping configurations for residential fin-tube baseboard systems.

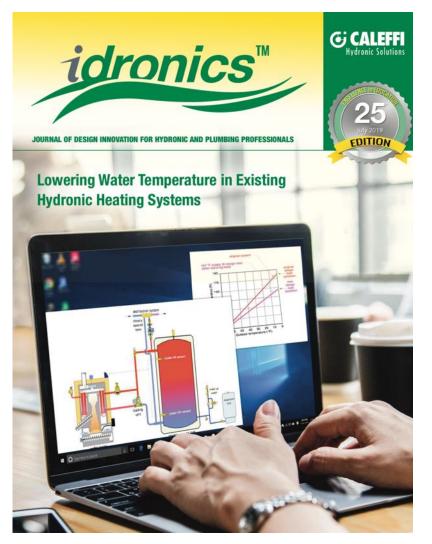
Fin-tube typically sized based on supply water temperatures (180-200 °F) at design load conditions.

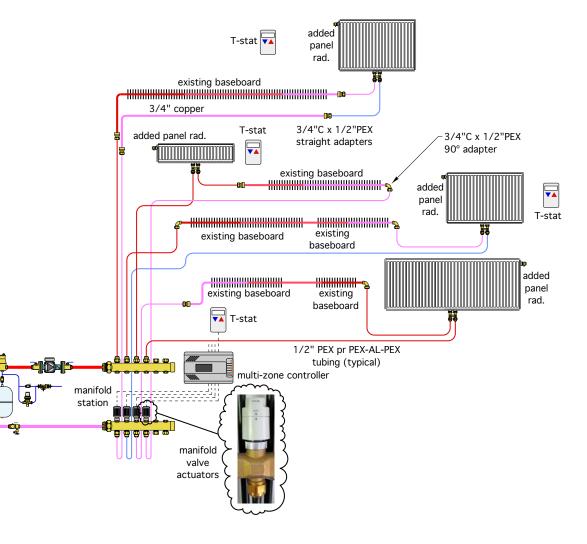
Convert the series system to a parallel system


• Parallel piping of heat emitters is preferred over series piping because is <u>eliminates sequential</u> <u>temperature drop</u> from one heat emitter to another.

• Parallel piping also allows for *easier zoning and flow balancing*.

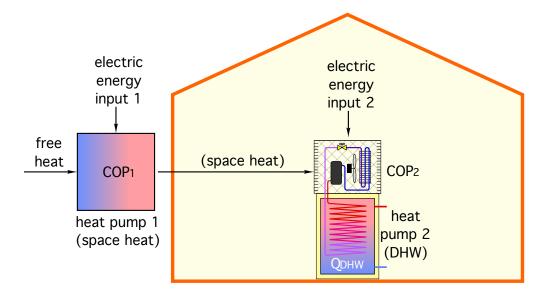

•Likely easier to "morph" distribution system from series to parallel using homerun circuits of 1/2" PEX or PEX-AL-PEX.



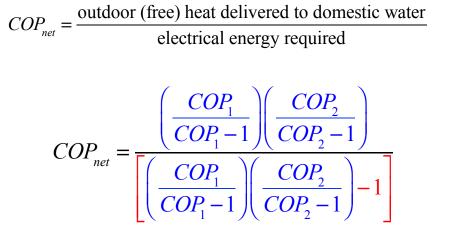


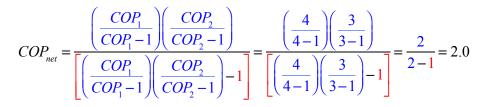
Zoning each circuit using manifold valve actuators

idronics #25 covers water temperature reduction in detail



What about domestic hot water?

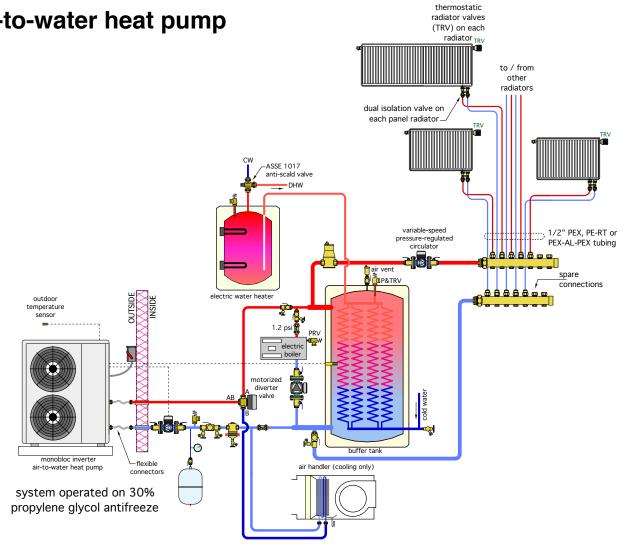

It's natural to think that using an air-source heat pump for space heating, along with a heat pump water heater for domestic hot water is a good solution...



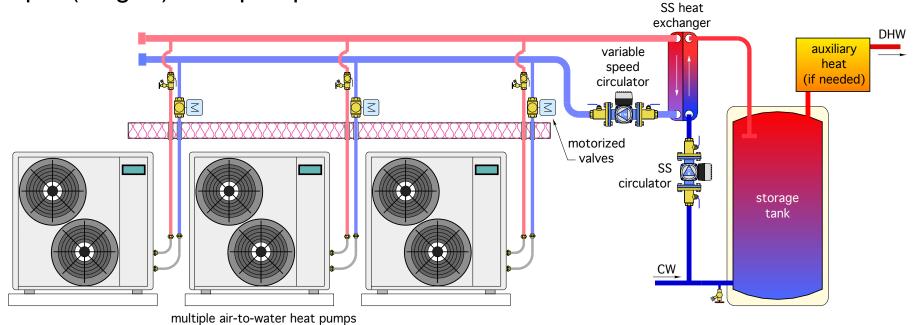
Combining an air-to-air heat pump with a heat pump water heater

Consider an installation where the heat pump that supplies space heating is operating at a COP_1 of 4.0. The heat pump water heater is operating at a COP_2 of 3.0. The net COP based on getting free heat into domestic water would be:

Using a low ambient air-to-water heat pump for both space heating & domestic hot water is likely more efficient than combining an air-to-air heat pump with a heat pump water heater.

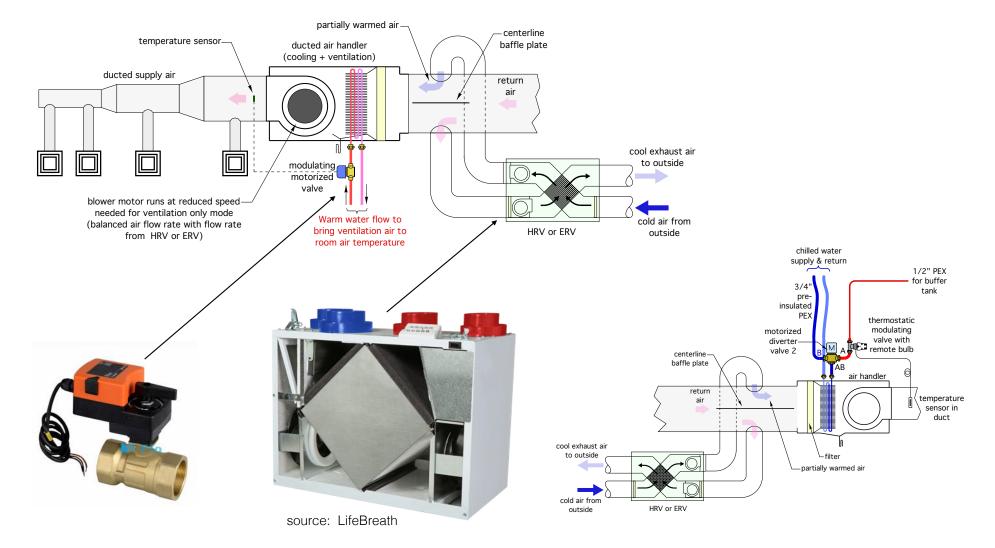

Control strategy for DHW using air-to-water heat pump

1. During heating season the buffer tank temperature is maintained based on outdoor reset control.


2. During "non-heating" season the buffer tank temperature is maintained based on setpoint control (120-130 °F) range. [warm outdoor temperatures = high COP, and high heating capacity]

3. During cooling season, a call for cooling takes priority over call for DHW.

4. temperature-based time delay on air handler blower startup to allow fluid to "chill" down to 70 °F prior to air circulation.


Air to water heat pumps can also provide commercial DHW

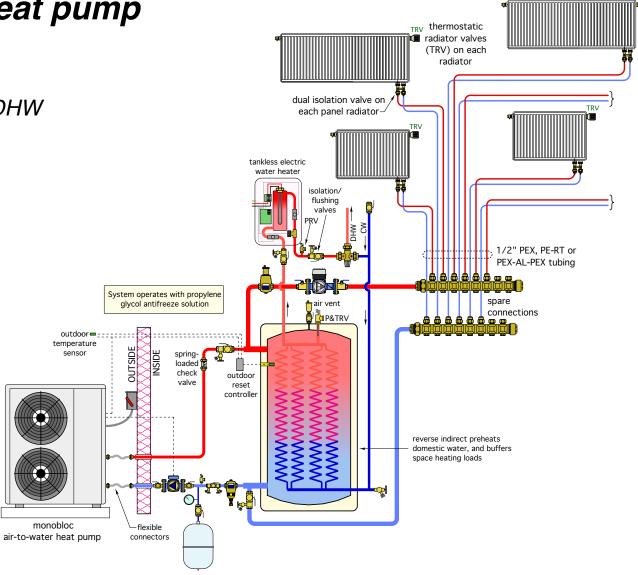
• Multiple (staged) heat pumps

- Variable speed circulator automatically adjusts flow as heat pumps stage on & off
- Each heat pump can be isolated and serviced without system shut down.

What about ventilation?

Incorporate a heat recovery ventilator with the air handling system

thermostatic radiator valve Incorporate heat recovery ventilation (typ. each radiator) vestibule floor circuit (space heating, cooling, DHW, ventilation) Ю 0 Caleffi 221 valve dual isolation valve on & 472 actuato each panel radiator A total solution for a low-ASSE 1017 anti-scald valve energy or net-zero project DHW to / from 3/4 other radiators 1/2" PFX tubing Single source for all Taco 0018e variable-speed system operated on 30% pressure-regulated installation work and service circulator propylene glycol antifreeze air ven electric water heater (40 gallon / 4.5KW) **8888** m outdoo OUTSIC temperature Air handler blower can be 12 circuit inverted manifold "programmed" for low speed operation (100-150 CFM)when motorize diverter in ventilation only mode. valve 1.2 psi Air handler blower can go to 75 gallon TurboMax tank cold SpacePak iLAHP floviblo wate monobloc inverter connectors high speed (400 CFM per ton 3/4 air-to-water heat pump pre-insulated PEX centerline of capacity) for cooling. baffle plate B&D air handle return cool exhaust ai to outside -filter rtially warmed a cold air from

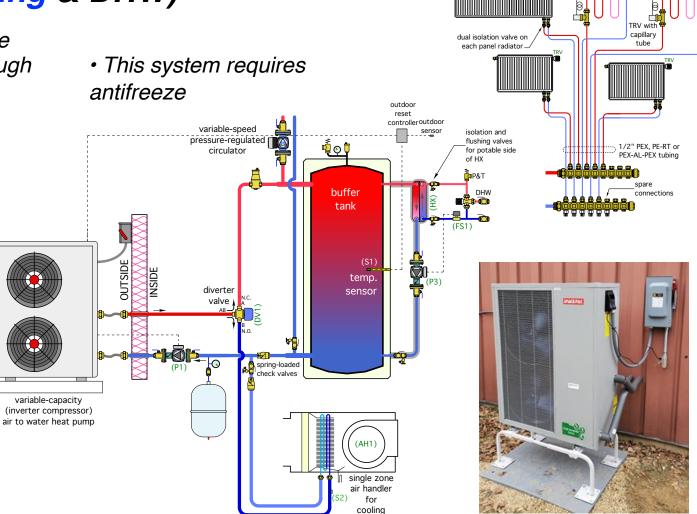

outside

HRV or FRV

Example systems

Monobloc air-to-water heat pump (space heating & DHW)

- Reverse indirect provide year round DHW
- Tankless water heater provides boost when needed



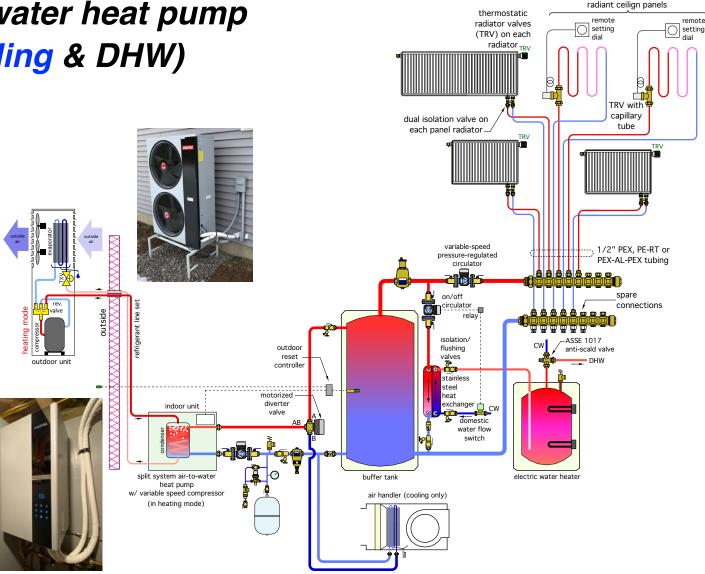
Variable speed monobloc air-to-water heat pump (space heating, cooling & DHW)

• Buffer tank serves zoned space heating and provides DHW through brazed plate heat exchanger

• Cooling via single air handler. Capacity of heat pump reduces to maintain 45°F chilled water temperature to air handler.

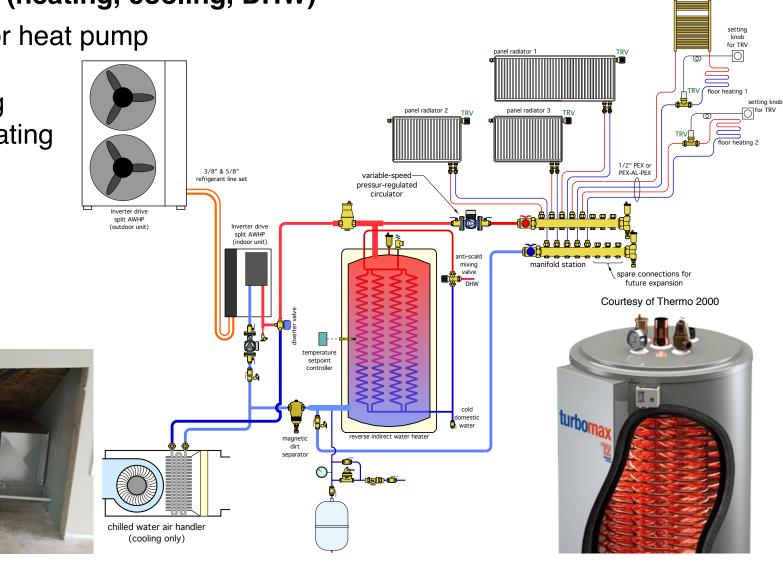
• Homerun distribution system shows a mix of panel radiators and radiant panel circuits, all with individual thermostatic valves for room temperature control.

radiant ceilion panels


─ setting

thermostatic radiator valves

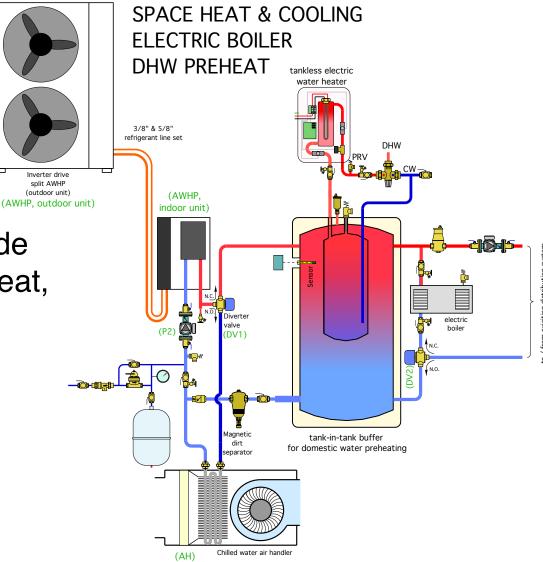
(TRV) on each


Split-system air-to-water heat pump (space heating, cooling & DHW)

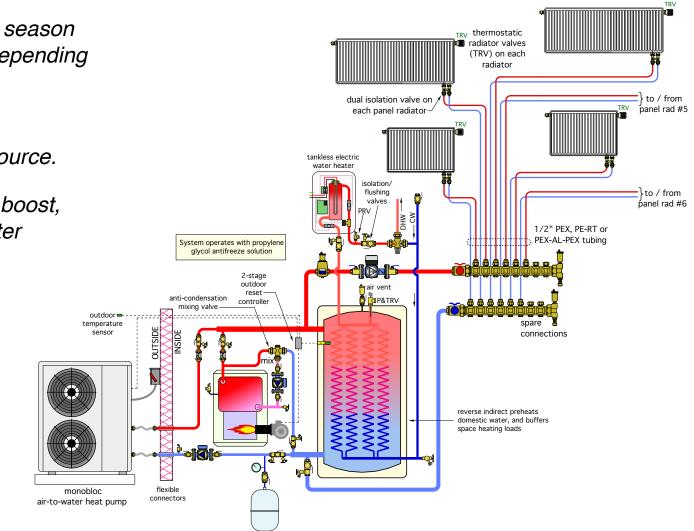
- No antifreeze required with a split system heat pump
- DHW preheat through external SS heat exchanger
- Heat pump cooling capacity adapts to air handler based on holding set 45-55°F chilled water temperature.
- If used for cooling all chilled water piping & components would be insulated an vapor sealed.

A complete system (heating, cooling, DHW)

- Inverter compressor heat pump
- Multi-zone heating
- Single zone cooling
- Domestic water heating
- Single tank system

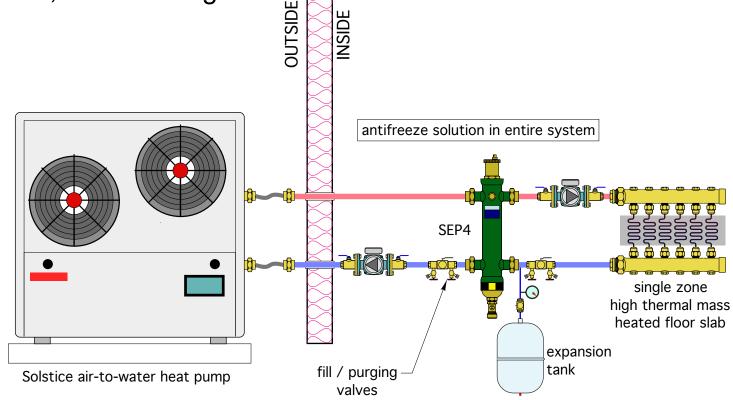

towel warmer radiator

Domestic hot water can be preheated with one of two types of "reverse" indirect buffer tanks, then "topped off" with an electric tankless or tank-style heater.


One tank can provide DHW or DHW preheat, and buffer space heating loads.

Retain existing boiler as supplemental & backup heat source

- Heat pump provides majority of season space heating energy (75-95% depending on climate and heat emitters)
- Existing boiler serves as a supplemental and backup heat source.
- Tankless water heat provides a boost, when necessary, to domestic water that's preheated by heat pump.


AERMEC

Some systems can be designed without a buffer tank.

Example: Single zone high mass radiant floor heating.

Excellent for use in commercial slab-on-grade buildings such as garages, fire stations, aircraft hangers.

New air-to-water system installed in Poestenkill, NY, June 2021

The house

Existing system: propane-fired furnace and water heater

Existing house:

Space heating and domestic water heating supplied by propane-fired furnace and propane-fired water heater. 300 gallon underground propane tank installed for previous owner, and <u>owned</u> <u>by propane supplier, with exclusive filling rights</u>. Spring 2021 cost of propane: \$3.62/gallon,(about \$44/MMBtu delivered, assuming 89% combustion efficiency). House also has propane range and fireplace (latter is used very little). (September 2021 price was \$4.40 / gallon)

Annual propane cost: approaching \$4,000 (Invoices totaling \$3585 between mid-Oct 2020 and June 2021). Estimate 90% for space heating & DHW.

Air-to-water heat pump: Enertech "Advantage" air-to-water heat pump system, installed June 2021. This heat pump provides space heating, chilled water cooling, <u>and close to 100% of</u> <u>domestic hot water</u>. Heating and cooling supplied through existing forced air duct system. 9 KW (30,700 Btu/hr) electric auxiliary heat contained in indoor unit of heat pump,System includes hydronic manifold station allowing for future addition of panel radiators or areas of radiant floor heating.

Approximate installation cost: \$23,000.

Installing Contractor: The Radiant Store, Troy, NY (Terry Moag & Ben Melick)

Estimated annual COP of air-to-water heat pump: 2.5 (conservative estimate)

Average cost of thermal energy provided by heat pump, based on current National Grid rate of \$0.125/kwhr, \$14.65 / MMBtu delivered).

Estimated saving in heating /DHW cost using heat pump: \$2400/year

New air-to-water system installed in Poestenkill, NY, June 2021

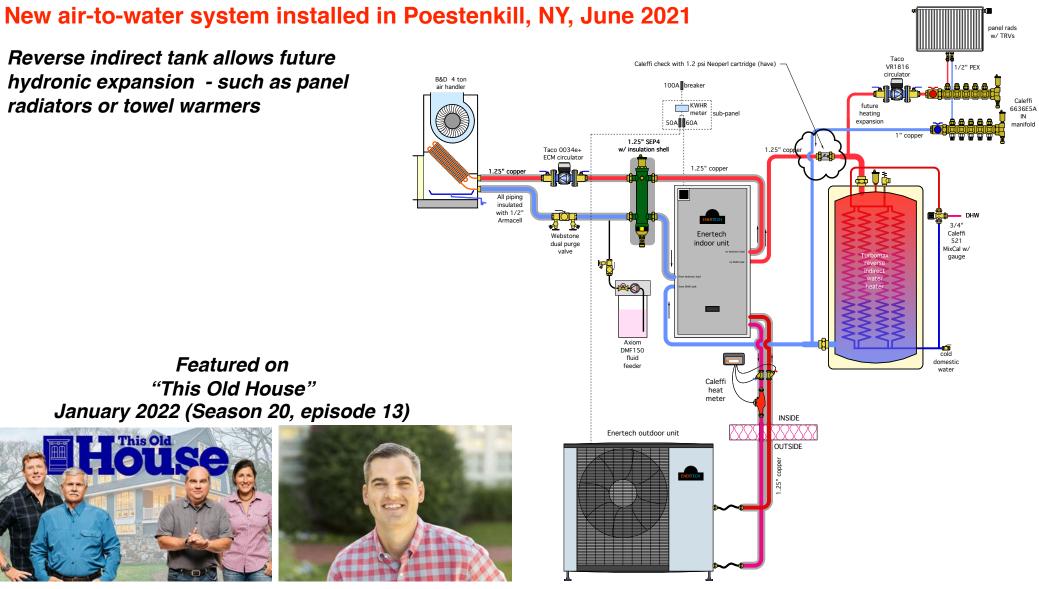
Enertech "Advantage" system nominal 5-ton outdoor unit

Installed (unsubsidized) cost \$23,000

Installed by The Radiant Store (Terry Moag), Troy, NY

System has thermal and electrical energy monitoring (Caleffi CONTECA Btu meter)

Indoor portion of system

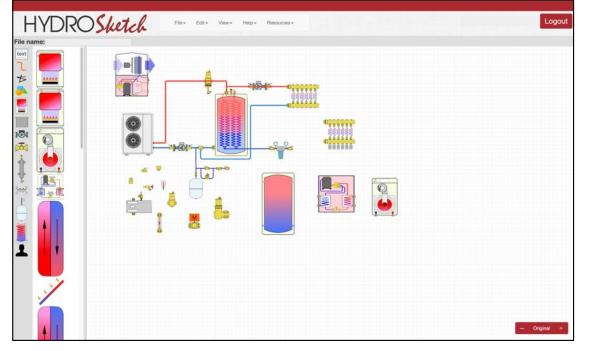


future expansion of hydronic heating (Caleffi manifold station)

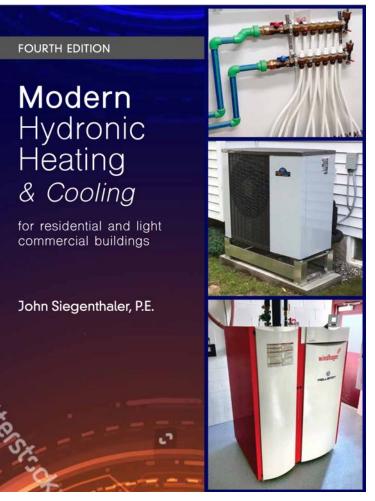
DHW tank (TurboMax)

\air handler w/ chilled water coil (B&D manufacturing)high efficiency ECM circulator (Taco 0034e+)

Enertech indoor unit



Thanks for attending today's presentation


please visit our website for more information and design tools...

www.hydronicpros.com

coming in APRIL 2022

QUESTIONS ?