An Update on Project Overcoat: Wall Insulation Upgrade Testing at CRRF

Garrett Mosiman Senior Research Fellow Center for Sustainable Building Research, University of Minnesota mosi0019@umn.edu

Pacific Northwest

Dr. Jian Zhang

Cheryn Metzger

Dr. Sumitrra

Harshil

Nagda

Travis

Ashley

Philip Jensen

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Rolf

OAK RIDGE

Andre Desjarlais

Dr. Antonio Aldykiewicz

Jerry Atchley

Pat Huelman

Garrett Mosiman

Jacobson

Background and Scope

Project Goals

Original (Proposed)

- Analyze the performance of a variety of exterior wall retrofit systems for the cold climate based on the following criteria:
 - Low-cost relative to the energy-efficient benefit or
 - Potential for future cost compression
 - Moisture-durable
 - Deep energy retrofits only
 - Leaving cladding on only

Advisory Group and Evolution of Project Goals

- Nearly 30 experts from all sectors of residential construction
- Five meetings over the course of the project
- First Meeting: Most Important Selection Criteria for Test Walls
 - air infiltration
 - constructability
 - cost/potential for cost compression
 - ease of control layer installation
 - time to install
- Updated Project Goals
 - Most impactful (most homes, most energy savings)
 - Removing OR leaving cladding in place
 - Does not necessarily need to be "deep"

Major Project Components

Guiding Research Questions

- Which systems are easier or harder to install correctly (based on lab team experience)?
- Which walls perform better than others in terms of moisture performance in the cold climate?
- Which walls perform better than others in terms of thermal performance in the cold climate?
- How do these walls compare in terms of
 - Cost?
 - Future/predicted cost?

Relationship to Advanced Building Construction (ABC) Initiative

- Most walls are exterior retrofits can be installed without disruption to occupants
 - Bonus: Pandemic friendly
- Walls from DOE's Advanced Building Construction (ABC) program that were "ready" for testing were added to Phase 2 of this project

Project Goal

- Determine "the best" exterior wall retrofit system for the cold climate based on the walls studied and according to the following criteria:
 - low cost relative to the energy-efficient benefit –High R-value, airtight construction
 - Moisture-durable Location of thermal control layer, airtight construction, vapor control strategy
 - can be applied to a large portion of existing walls
 - "Fool Proof" construction

Building Science Issues: Thermal Control

The relationship between insulation and moisture

As insulation levels increase, moisture risks are inherently magnified. This is due to what

William Rose calls this the Fundamental Rule of Material Wetness: Cold materials tend to be wet and warm materials tend to be dry.

Or, from Pat Huelman, renowned U of M Building Scientist:

"It's not a moisture problem, it's an energy problem!"

Building Science Issues: Air Control

A premium retrofit would include a dedicated air barrier which is:

- -Continuous
- -Structural (must not move under load)
- -Impermeable (to air)
- -Durable

However we are attempting to represent the real world, so some upgrades have one, some don't.

Air control integrity and air leakage calibration:

- Sheathing boards were not set tight, building paper was lapped and stapled but not sealed
- The entire panel perimeter was sealed before installation
- Used TEC Minneapolis Micro Leakage Meter @ 50 Pa across the wall panel
- Used a sealed electrical box with small hole to calibrate and equilibrate
- Final base wall measurements varied between 0.37 0.42 cfm @ 50Pa
- Post-treatment: cavity treatments were TLM (< 0.2 cfm); exterior treatments remained similar

Building Science Issues: Vapor Control

As we all know, the vapor retarder goes on the warm side...

But our basecase wall already has two: one on the interior, one on the exterior.

Treatments are designed so some ignore this fact, and some explicitly aim to accommodate this potential risk.

Building Science Issues: Water Control

The base case wall has an existing water control layer: #30 building paper.

Some treatments rely on this existing layer, while others add supplemental water control layers, or remove the siding and paper to add a new water control layer.

Oil primer

- Vapor retarder primer (0.6 perm)
- Latex paint

Preparation of Base Case Walls:

- Interior Finish: Framing: Sheathing: Water Control: Cladding:
- 5/8" Drywall (with vapor retarder primer)
 2x4 SPF at 16" o.c.
 1x6 Pine
 #30 Building paper
 7 ¼"" Cedar Lap Siding (with oil primer, vapor retarder primer, and latex topcoat)

Potential insulation location strategies

Exterior only

Cavity only

IP Fiber cement lap siding on 1x4 furring 1x6 pine sheathing #30 building paper Ced_{ar lap} saing 4" rigid mineral wool insulation Liquid applied membrane 2x4 stud wall, no insulation ^{5/8}" GWB

Hybrid (cavity + exterior)

Potential insulation location strategies

Hybrid Cavity + Interior

Cloquet Residential Research Facility

PNNL – Wall Upgrades for Residential Deep Energy Renovation

In-situ Experimental Research

Cloquet Residential Research Facility University of Minnesota

Research Team

Pat Huelman, Principal Investigator Garrett Mosiman, CRRF Manager Rolf Jacobson, Field Support Fatih Evren, Graduate Assistant

Cloquet Residential Research Facility

- Located at the University of Minnesota's Cloquet Forestry Center near Cloquet, MN
- Completed in 1997
 - original funding provided by CertainTeed Corp.
- Designed as a test bed to: evaluate long-term, cold-climate performance of full-scale building envelope components including:
 - foundations,
 - walls,
 - wall/window interface, and
 - roofing systems.

CRRF Building Design

Single-story building on a full basement

- West basement has hollow masonry block walls and I-joist floor trusses
- East basement has poured concrete walls with open web floor trusses

Divided into 10' test bays along east/west axis

- □ 12 bays on main level with end guard bays
 - □ bays 1 to 6 framed in wood
 - bays 7 to 12 framed in metal
- 2 basement bays with end guard bays

Wall Selection

Results From 2019 Expert Meeting

- Most important wall selection criteria
 - air infiltration
 - constructability
 - cost
 - ease of control layer installation
 - time to install

Additional DOE Guidance

- After reviewing expert meeting results with DOE, additional guidance included:
 - Most impactful (most homes, most energy savings)
 - Removing OR leaving cladding in place
 - Does not necessarily need to be "deep"

Treatment Summary

- 8 types of insulation; fiberglass, cellulose, mineral fiber, EPS, XPS, Polyiso, PU, VIP
- 5 forms of insulation; batt, blown-in, panels, blocks, pourable/injected
- 12 combos of insulation type and form (more than one insulation is used in some treatments)
- 3 types of added water and/or air control layers (housewrap, peel and stick, LAM)

We ended up with:

- 9 wall treatments built on-site with existing building materials
- 1 wall treatments used prefabricated components
- 3 wall treatments used off-site produced systems
- 4 wall treatments of novel/emerging materials or systems

Wall Treatment Summary	Phase 1	Phase 2	Total
 Interior w/ cavity 	0	1	1
- Cavity only	2	1	3
- Exterior w/ cavity	2	3	5
- Exterior only	3	2	5

Wall B (B1 W1) Cellulose

Wall C (B1 W2) **Injected Foam**

2x4 stud wall, closed cell foam retrofit insulation

^{5/8}" GWB

Cedar lap sding

Base Case \overline{V} V// 1x6 pine sheathing #30 building paper Cedar lap sding 2x4 stud wall, no insulation ^{5/8}" GWB

Wall E (B3 W1) Cellulose + XPS

Wall L (B11 W1) **Exterior PIR**

	ļ			0.0.0.0.0.0.0	
itie cladding	¹ Sulation Inded poly.	alleathing	1 wall erglass retroit	8	
Compos over furri	1" PIR ir. Spun-bo oletin 1x6 pine	2X4 ~	blown fib nsulation	^{5/8} " GW	

Wall I (B11 W2) Base Case 2

^{5/8"} GWB

Wall J (B12 W2) Fiberglass

Wall P (B9 W1) Thermal Break Shear

	Wall C Exterior) (B9 W2) Fiberglas	SS
Fiber cement lap siding on 1x4 furning 2 "rigid fiberod	"-oulation - glass Spun-bonded polyolefin Cedar lap sding #30 building no.	1X6 pine sheathing 2x4 stud wall, blown fiberglass insulationretrofit	5/8" GWB

Wall N (B10 W1) ABC-Fraunhofer

Wall M (B10 W2)

REALIZE-EIFS

Measuring constructability

ID	Description	Material Acquisition	Installation Ease	Installation Speed	# of Operations	Added Thickness
В	Drill-&-Fill Cellulose (dense-pack)	readily available to contractor	very easy; straightforward	very fast	2	0
С	Injected Cavity Foam (proprietary oc-spu)	not currently available	moderately easy	very fast	2	0
D	Pre-fab Ext EPS (panel w/struts)	available at some BMS*	very easy; straightforward	somewhat fast	3	5.25"+
Е	Drill-&-fill Cellulose + Ext XPS	readily available to contractor	several layers or steps	somewhat slow	5	2.5"
F	Drill-&-fill Cellulose + VIP/Vinyl Siding	not currently available	several layers or steps	somewhat fast	4	0.5
G	Exterior Mineral Fiber Board	available at some BMS*	moderately easy	somewhat slow	3	5.25"+
Н	Ext. gEPS Structural Panel System	available at some BMS*	several layers or steps	somewhat fast	4	7"
J	Drill-&-Fill Fiberglass (proprietary, high-dens)	available at most BMS*	very easy; straightforward	very fast	2	0
K	Fiberglass Batt + Int Polyiso	readily available to contractor	moderately easy	somewhat slow	4	1"
L	Drill-&-Fill FG + Ext Polyiso	readily available to contractor	several layers or steps	somewhat slow	5	1.5"
М	Pre-fab Ext EPS/EIFs Panel System	available from manufacturer	moderately easy	somewhat fast	3	5.75"
Ν	Pre-fab Ext PU/Vinyl Block System	not currently available	very easy; straightforward	somewhat fast	2	4"
0	Drill-&-Fill FG + Ext FG Board	available at some BMS*	moderately easy	somewhat slow	4	3.25"
Р	FG Batt + XPS + OSB (thermal break shear)	readily available to contractor	moderately difficult	quite slow	6	0.75"

* BMS refers to Building Materials Supply outlets such as big-box DIY chains and larger local or national lumberyards ⁺ Two layers of continuous exterior insulation for colder climates; a single layer may be adequate for warmer climates

Instrumentation

Sensor Array +/- 700 sensors

- TC-Thermocouple temperature sensor
- RH-Relative humidity sensor
- MP-Pin-type moisture content sensor
- HF-Heat flux plate
- Sensor position number

Omega Type-T Thermocouple Honeywell HIH-4000 Series Brass nails + Enamel Paint FluxTeq PHFS-09e

Pyronometers

- 6 Campbell Scientific CS320
- Vertical mount (4 south, 2 north)

Weather Station

- Wind speed / direction
- Temp / RH
- Horizontal pyronometer
- Rain gauge

Sensor position number (#)

3

5

▲ 6)

Wall D

Lh

N

Sensor Array

- TC-Thermocouple temperature sensor .
- RH-Relative humidity sensor .
- MP-Pin-type moisture content sensor F
- HF-Heat flux plate
- Sensor position number (#)

#30 building paper

Cedar lap sding

2x4 stud wall, no insulation

DAS Equipment by Campbell Scientific:

Datalogger Thermocouple Module RH and Heat Flux Moisture Content Communication

CR1000X (2) Temp 120 (16) Volt 116 (16) AM 16/32 (8) Sierra RV50X cellular modem

Initial Monitoring Results

Baseline Wall Temperature

Injected Foam Wall Temperature

Exterior Graphite EPS Wall Temperature

Relative Humidity For All Walls Over Time -Base Case (N) --Base Case (S)

Heat Flux For All Walls on Coldest Day

Retrofit Wall Assembly

Heat Flux For Phase 2 Walls on Coldest Day 2021/02/13 7am <-30F

North Walls 📃 South Walls

Heat Flux Over Time For All Walls

Heat Flux For Phase 2 Walls Over Time

Wall A Baseline Interior Sheathing Phase 1 (FY20) vs. Phase 2 (FY21)

Upper

Middle

Hygrothermal testing and Modeling

Material property testing

Thermal properties

 ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus

Insulation	Thickness, in	Density, pcf	k, Btu-in/hr ft² F	R, hr ft ² F/Btu-in
2-in. EPS	1.54	1.40	0.241	4.16
2.5-in. EPS	2.03	1.21	0.252	3.97
2-in. graphite-impregnated EPS	2.15	1.95	0.217	4.60
2-in. XPS	2.01	1.50	0.199	5.02
2-in. mineral wool	1.88	9.20	0.239	4.18
Dense-packed cellulose	3.50	3.50	0.286	3.50
Spray foam	2.01	1.58	0.174	5.76
1 by 6-in. wood siding	0.77	27.1	0.652	1.53
5/8-in. gypsum	0.62	43.7	0.513	2.81
3/4-in. OSB	0.71	40.5	0.407	2.46
Wood siding	0.80	26.0	0.588	1.79
Fiber cement siding	0.32	79.5	0.538	1.86
Fiberglass compression layer	0.50	3.83	0.221	4.52

Vapor permeance

• ASTM E96, Standard Test Methods for Water Vapor Transmission of Materials

Materials	Water vapor transmission		Perm	eance	Permeability		
	g/h*m²	grains/h* ft ²	g/s*Pa*m ²	perm	g/s*Pa*m	perm-in	
1x6 wood siding	2.356	3.369	4.200x10 ⁻⁷	7.735	8.411x10 ⁻⁹	5.787	
Gypsum board	10.659	15.243	2.000x10 ⁻⁶	34.999	3.110x10 ⁻⁸	21.394	
Gyp board + paint	2.457	3.514	4.616x10 ⁻⁷	8.068	7.120x10 ⁻⁹	4.962	
15# Felt	4.979	7.120	9.342x10 ⁻⁷	16.348	6.202x10 ⁻¹⁰	0.427	
WRB	7.065	10.103	1.326x10 ⁻⁶	23.199	1.189x10 ⁻¹⁰	0.082	
WRB + liquid AVB coating	3.227	4.615	6.056x10 ⁻⁷	10.597	5.628x10 ⁻¹⁰	0.387	
AVB membrane	0.006	0.008	1.069x10 ⁻⁹	0.019	8.380x10 ⁻¹³	0.001	

Wall A, base case, simulated & measured temp & RH, south facing orientation

WUFI (pos_#) vs measured RH (RH_#) and Temperature (TC_#)

Simulations

Cities & Climate Zones

- Fairbanks, AK (subarctic)
- International Falls, MN (very cold)
- Boston, MA (cold)
- Charleston, SC (mixed humid)
- Amarillo, TX (mixed dry)
- Miami, FL (hot humid)
- Tucson, AZ (hot dry)
- Seattle, WA (marine)

ASHRAE 160

- Simulations run for 3 years
- Interior conditions, htg only

Simulations

mixed hot subarctic very cold cold humid mixed dry humid hot dry 0.0 -0.2 -0.4 -0.6 €µ -0.8 µ/q -1.0 -12 -14 -1.6 -1.8 ■ eastern white cedar ■ bituminous membrane ■ eastern white pine ■ interior gyp

Total moisture accumulation Consecutive days RH > 80% 180 160 140 120 <u>ب</u> 100 80 60

Energy consumption

Mold index

Note: The hygrothermal properties are used to calculate a mold index based on the VTT model for all surfaces, excluding WRBs, and then classified in accordance with ASHRAE 160. Mold index is used to compare different wall retrofits.

Simulations

	Highlighted indicates mold index ≥ 3	Subarctic	Very Cold	Cold	Mixed humid	Mixed dry	Hot humid	Hot dry	Marine	Subarctic	Very Cold	Cold	Mixed humid	Mixed dry	Hot humid	Hot dry	Marine
ID	Wall Name/ Description			South	nern Wa	ll Expos	sures					North	nern Wa	II Expo	sures		
Α	Base Case 1	0.5	0.8	0.5	0.1	0.2	0.0	0.0	1.5	0.5	1.3	0.8	0.7	0.6	0.3	0.0	2.4
В	Drill-&-Fill Cellulose (dense-pack)	<mark>3.6</mark>	<mark>3.7</mark>	<mark>3.2</mark>	1.8	2.4	0.3	0.1	3.6	<mark>3.7</mark>	<mark>3.8</mark>	<mark>3.5</mark>	<mark>3.5</mark>	2.7	2.4	0.6	<mark>3.7</mark>
С	Injected Cavity Foam (cc-spu)	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.3	0.1	0.4	0.0	0.3	0.0	0.3
D	Pre-fab Ext EPS (panel w/struts)	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.6	0.0	0.0	0.0	0.1
Ε	Drill-&-fill Cellulose + Ext XPS	0.3	0.5	0.4	0.3	0.4	0.2	0.1	1.1	0.3	0.5	0.5	0.7	0.5	0.3	0.1	1.3
F	Drill-&-fill Cellulose + VIP/Vinyl Siding	0.3	0.3	0.2	0.1	0.2	0.1	0.0	0.7	0.3	0.3	0.3	0.3	0.3	0.1	0.1	0.6
G	Exterior Mineral Fiber Board	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
Н	Exterior gEPS Structural Panel System	1.4	1.3	1.1	0.7	0.9	0.4	0.6	1.0	1.5	1.3	1.1	0.8	1.0	0.5	0.7	1.0
I	Base Case 2	0.5	0.8	0.5	0.1	0.2	0.0	0.0	1.5	0.5	1.2	0.8	0.7	0.6	0.3	0.1	2.4
J	Drill-&-Fill FG (proprietary FG, high-dens)	2.9	<mark>3.0</mark>	2.2	0.4	0.4	0.1	0.0	<mark>3.0</mark>	<mark>3.2</mark>	<mark>3.2</mark>	2.8	2.6	1.3	1.2	0.0	<mark>3.3</mark>
К	Fiberglass Batt + Int Polyiso	1.3	1.8	0.6	0.1	0.1	0.1	0.0	2.5	2.4	2.7	1.6	1.6	0.5	0.7	0.0	2.8
L	Drill & Fill FG + Ext Polyiso	0.5	0.6	0.1	0.1	0.1	0.1	0.0	1.3	1.2	1.4	0.4	0.6	0.2	0.3	0.0	2.1
Μ	Pre-fab Ext EPS/EIFs Panel System	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0
Ν	Pre-fab Ext PU/Vinyl Block System	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
0	Drill-&-Fill FG + Ext FG Board	0.3	0.4	0.2	0.1	0.1	0.1	0.0	0.9	0.4	0.5	0.3	0.4	0.2	0.1	0.0	1.1
Ρ	FG Batt + XPS + OSB (Thermal Break Shear Wall)	0.3	0.5	0.0	0.7	0.1	0.1	0.0	1.2	0.6	1.1	0.3	1.1	0.1	1.1	0.0	1.2

Simulations: sample layer-by-layer results

Simulations: comparing layers and exposures

Building Energy Modeling

Energy Modeling

- Objectives
 - Evaluate the performance of wall retrofits
 - Support the selection of the candidate walls
 - Estimate the energy and energy cost savings of the retrofits
- Methodology
 - Adopt the DOE Single-family Prototype Model to represent existing homes based on ResStock and other data sources
 - Collect material properties and use THERM to calculate performance of the composite wall layers
 - Develop EnergyPlus models for different wall configurations and climates to estimate energy and energy cost savings
 - Feed the energy savings data to techno-economic analysis

DOE Prototype Single-Family Building Model

Item	Description	Data source						
Total Floor Area (sq. feet)	3,600 (30' x 40' x 3 stories) including conditioned basement	DOE prototype						
Aspect Ratio	1.33	DOE prototype						
Window-to-Floor Ratio	15%	DOE prototype						
Thermal Zoning	Single zone with living space, attic, and heated basement	DOE prototype						
Attic	vented	DOE prototype						
Basement	Conditioned and uninsulated	DOE prototype						
Floor to ceiling height	8.5'	DOE prototype						
Windows	Double pane U-factor of 0.55 Btu/h-ft2-F and SHGC of 0.76	ResStock						
Roof insulation	Insulated at attic floor R30	ResStock						
Wall insulation	Wood framed without insulation (or R0)	ResStock						
Air infiltration	ACH50 of 15	ResStock						
Heating	Gas furnace 80% AFUE	ResStock						
Cooling	SEER 10	ResStock						
Duct	In conditioned space	ResStock						
Water heater	Gas storage water heater	DOE prototype						
https://www.energycodes.gov/development/residential/iecc_models								
https://www.nrel.gov/buildings/resstock.html								

Baseline – Insulation wall

n wall

THERM Model of Baseline and Retrofit

THERM Results of Walls in Isothermal View

Wall H – Exterior Graphite EPS

Mineral Wool

Benchmark of Modeled Results with Measurement for Wall J – Drill-and-Fill (Fiberglass)

Wall Name	Energy Savings due to Insulation Improvement (kBTU/sqft)	Overall Assembly Thermal Resistance (hr- sqft-deg F/Btu)	Savings to R-Value Ratio
Wall B: Drill-and-Fill (Cellulose)	34.29	14.2	2.42
Wall J: Drill-and-Fill (Fiberglass)	36.26	16.5	2.20
Wall P: Thermal Break Shear	38.46	18.9	2.03
Wall C: Minimally Invasive Cavity Spray Foam	38.24	19.5	1.96
Wall K: Interior Polyiso Insulation	38.84	20.6	1.89
Wall G: Exterior Mineral Fiber Board Insulation	40.62	22.9	1.77
Wall L: Exterior Polyiso Insulation	40.1	22.8	1.76
Wall O: Exterior Fiberglass Board Insulation	41.24	25.2	1.64
Wall D: Exterior EPS Insulation	40.44	24.8	1.63
Wall F: Drill-and-Fill with Exterior VIP Siding	41.29	25.5	1.62
Wall M: Realize EIFS Panel	42.38	27.2	1.56
Wall N: ABC Fraunhofer Blocks	42.21	27.6	1.53
Wall H: Exterior Structural gEPS Panel (Inspired by EnergieSprong)	42.54	28.5	1.49
Wall E: Drill-and-Fill with Exterior XPS Insulation	42.24	28.4	1.49

Annual Site Energy Use Savings Phase-1

Annual Energy Use Intensity for DOE Prototype Single-family Home

Wall A: Baseline

■ Wall C: Minimally Invasive Cavity Spray Foam

■ Wall E: Drill-and-Fill w/ Exterior XPS Insulation (Siding Removed)

■ Wall B: Drill-and-Fill (Cellulose)

Wall D: Exterior EPS Insulation

■ Wall F: Drill-and-Fill w/ Exterior VIP Siding (Siding Removed)

	Percent Energy Savings compared to Wall-A Base Case									
Wall-B	7.9%	15.3%	17.6%	20.8%	21.5%	21.9%	22.4%	22.4%		
Wall-C	9.4%	18.1%	21.2%	25.2%	26.2%	26.7%	27.4%	27.5%		
Wall-D	13.3%	24.4%	28.3%	33.5%	35.1%	35.9%	37.0%	36.9%		
Wall-E	13.3%	24.8%	28.9%	34.4%	36.0%	36.9%	38.1%	38.0%		
Wall-F	13.2%	24.5%	28.5%	33.9%	35.5%	36.3%	37.5%	37.5%		
Wall-G	13.7%	25.0%	28.7%	33.7%	35.2%	36.0%	37.2%	37.0%		
Wall-H	14.0%	25.7%	29.4%	34.7%	36.3%	37.1%	38.2%	38.1%		
250										

Annual Site Energy Use Savings Phase-2

		Annual Ene	ergy Use Int	tensity for DOE F	Prototype Sing	le-family Home		
 Wall I: Baseline Wall L: Exterior Polyiso Insulation (Siding Removed) 			 Wall J: Drill-and-Fill (Fiberglass) Wall M: Realize EIFS Panel (Siding Removed) 			Wall K: Interior		
						Wall N: ABC Fra		
			Percent En	ergy Savings compared	to Wall-I Base Case	5		
Wall-J	9.1%	17.4%	20.3%	24.2%	25.1%	25.6%	26.3%	26.3%
Wall-K	8.5%	16.8%	19.5%	23.2%	23.9%	24.5%	25.0%	25.1%
Wall-L	13.0%	23.9%	27.9%	33.3%	34.9%	35.7%	36.8%	36.8%
Wall-M	12.3%	24.3%	28.8%	34.4%	36.1%	36.9%	38.1%	38.0%
Wall-N	12.2%	24.1%	28.6%	34.3%	35.9%	36.8%	38.0%	37.9%
Wall-O	13.4%	24.6%	28.6%	33.9%	35.5%	36.3%	37.5%	37.4%
Wall-P	12.5%	23.0%	27.1%	32.3%	34.0%	34.7%	35.9%	35.8%
250 —								

Sensitivity to Assumed Infiltration

- The baseline wall infiltration ACH 15 per ResStock
- The experiment design doesn't allow accurate whole house infiltration reduction
- · Sensitivity analysis was used to separate the impact of air leakage and insulation

Breakdown of Energy Savings from Thermal Resistivity and Air Leakage Improvement in Duluth, MN (CZ7)

Summary

- An energy modeling methodology with THERM and EnergyPlus was implemented to evaluate the retrofit walls
- 9 of 14 retrofit walls have higher R-values than IECC code
- · Cavity-only retrofits have less savings
 - B Drill-and-Fill (Cellulose), C Minimally Invasive Cavity Spray Foam, and J Drill-and-Fill (Fiberglass)
- Deep retrofit with or without removing cladding can have great savings
 - 30-38% whole building energy savings for CZ 5-8 and 25-35% for CZ4
 - A third of the savings is from the assumed air leakage reduction
- Benchmarked energy models can predict retrofit performance for more wall configurations and climates
- The results are used by the techno-economic analysis

Techno-Economic Analysis

Techno-Economic Study Objectives

- Synthesize experimental data, model/simulations and economic data to understand energy, cost and environmental impacts of wall systems.
- Goal: identify options that will save energy, be moisture durable, and promote residential building retrofits at scale.

Cost Data

- Cost estimates provided by Earth Advantage:
 - Earth Advantage worked with three local retrofit contractors to determine:
 - ✓ Material cost
 - ✓ Labor cost
 - \checkmark Additional overhead or miscellaneous costs if necessary.
 - Cost estimates include large and small local contractors.
 - Three cost estimates for each wall was provided.
- Additional cost data gathered from manufacturers and RS Means
- Cost data from one local region (Portland, OR) extrapolated to other regions using RS Means regional indices. Costs will match the regional energy and moisture model analyses.
- Shows the performance of walls across the different climate zones (material, labor and energy cost savings over a 30-year period)
- All costs calculated as departures from the baseline wall (Delta Method)

Limitations to Cost Data

- Injected foam and VIP panels not commercially available. g-EPS "Energie Sprong" technology is not fully developed. The same is true for the EIFS and Fraunhofer retrofits. Material and labor costs are estimates at this point.
- Labor costs for emerging technologies are not well known. Contractors found it more difficult to bid labor for wall systems they weren't familiar with.
- Significant variability in costs regionally
- Significant variability in costs depending on purchasing power of the contractor
- Utility programs, WAP, and other EE programs around the country have impacts of final costs of materials.
- Energy costs are moving up, so future cost effectiveness will change accordingly.
- Costs for labor and materials are crazy right now!

Cost Data Sources

ID	Wall Name	Cost Data Source(s)
В	Drill-&-Fill Cellulose (dense-pack)	Cost Estimator, RS Means
С	Injected Cavity Foam (proprietary cc-spu)	Manufacturer
D	Pre-fab Ext EPS (panel w/struts)	Cost Estimator, RS Means
Е	Drill-&-fill Cellulose + Ext XPS	Cost Estimator, RS Means
F	Drill-&-fill Cellulose + VIP/Vinyl Siding	Cost Estimator, Manufacturer
G	Exterior Mineral Fiber Board	Cost Estimator
Н	Exterior gEPS Structural Panel System	Cost Estimator
J	Drill-&-Fill Fiberglass (proprietary FG, high-density)	Cost Estimator, RS Means
K	Fiberglass Batt + Int Polyiso	Cost Estimator, RS Means
L	Drill & Fill FG + Ext Polyiso	Cost Estimator, RS Means
М	Pre-fab Ext EPS/EIFS Panel System	Manufacturer
Ν	Pre-fab Ext PU/Vinyl Block System	Manufacturer
0	Drill-&-Fill FG + Ext FG Board	Cost Estimator, RS Means
Р	FG Batt + XPS + OSB (Thermal Break Shear Wall)	Cost Estimator, RS Means

Material, Labor + Total Costs for All Walls

		Chicago Illinois (USD)			Burlin			
Title	Wall Description	Labor Cost (\$/ft ²)	Material Cost (\$/ft ²)	Total Cost (\$/ft²)	Labor Cost (\$/ft ²)	Material Cost (\$/ft²)	Total Cost (\$/ft²)	Rank (least to most expensive)
Wall B	Drill-&-Fill Cellulose (dense-pack)	1.45	0.40	1.85	1.46	0.41	1.87	1 🔸
Wall C	Injected Cavity Foam (proprietary cc-spu)	2.16	4.16	6.32	2.20	4.20	6.40	5
Wall D	Pre-fab Ext EPS (panel w/struts)	13.42	6.95	20.37	13.55	7.02	20.57	12
Wall E	Drill-&-fill Cellulose + Ext XPS	14.88	4.08	18.95	15.02	4.12	19.14	11
Wall F	Drill-&-fill Cellulose + VIP/Vinyl Siding	11.37	3.00	14.38	11.49	3.03	14.52	6
Wall G	Exterior Mineral Fiber Board	11.74	6.09	17.82	11.86	6.15	18.00	10
Wall H	Exterior gEPS Structural Panel System	14.99	6.94	21.93	15.14	7.01	22.15	13 🔸
Wall J	Drill-&-Fill Fiberglass (proprietary FG, high-density)	1.45	0.40	1.85	1.46	0.41	1.87	2 🔶
Wall K	Fiberglass Batt + Int Polyiso	3.78	0.82	4.60	3.82	0.83	4.64	3
Wall L	Drill & Fill FG + Ext Polyiso	12.05	2.33	14.38	12.17	2.36	14.53	7
Wall M	Pre-fab Ext EPS/EIFS Panel System	22.50	22.50	45.00	22.73	22.73	45.45	14 ┥
Wall N	Pre-fab Ext PU/Vinyl Block System	1.50*	3.56*	5.06*	1.52*	3.60*	5.11*	4*
Wall O	Drill-&-Fill FG + Ext FG Board	11.87	4.66	16.53	11.99	4.71	16.70	9
Wall P	FG Batt + XPS + OSB (Thermal Break Shear Wall)	13.17	2.75	15.92	13.31	2.77	16.08	8

* Costs for Wall N assume the block system is manufactured in volume.

30-Year Energy Cost Savings

			Construction / Performance				Economics Burlington						
		Materials Acquisition	# Operations	Speed of Installation	Ease of Installation	Added thickness, in.	Moisture Risk by CZ	Assembly R- Value (eff)	Energy Cost Savings, %	EUI Savings, %	Cost \$/sf Wall	IRR	Simple Payback
ID	Name												
В	Drill-&-Fill Cellulose (dense-pack)	1	2	1	1	0	4C 5 6 7 8	14.2	18%	22%	\$2	36%	3
С	Injected Cavity Foam (proprietary cc- spu)	х	2	2	1	0		19.5	22%	27%	\$6	12%	8
D	Pre-fab Ext EPS (panel w/struts)	3	3	1	2	5.3		24.8	30%	36%	\$21	3%	19
Е	Drill-&-fill Cellulose + Ext XPS	1	5	3	3	2.5		28.4	31%	37%	\$19	4%	17
F	Drill-&-fill Cellulose + VIP/Vinyl Siding	х	4	3	2	0.5		25.5	31%	36%	\$14	6%	13
G	Exterior Mineral Fiber Board	3	3	2	3	5.3		22.9	30%	36%	\$18	4%	16
н	Exterior gEPS Structural Panel System	3	4	3	2	7		28.5	31%	37%	\$22	3%	20
J	Drill-&-Fill Fiberglass (proprietary FG, high-dens)	2	2	1	1	0	4C 7 8	16.5	22%	26%	\$2	42%	2
к	Fiberglass Batt + Int Polyiso	1	4	2	3	1		20.6	21%	24%	\$5	16%	6
L	Drill-&-Fill FG + Ext Polyiso	1	5	3	3	1.5		22.8	30%	36%	\$15	6%	13
М	Pre-fab Ext EPS/EIFS Panel System	4	3	2	2	5.8		27.2	31%	37%	\$45	-2%	41
Ν	Pre-fab Ext PU/Vinyl Block System	х	2	1	2	4		27.6	31%	37%	\$5	22%	5
0	Drill-&-Fill FG + Ext FG Board	3	4	2	3	3.3		25.2	31%	36%	\$17	5%	15
Ρ	FG Batt + XPS + OSB (Thermal Break Shear Wall)	1	6	4	4	0.8		18.9	29%	35%	\$16	5%	15

Synthesizing Techno – Economic Performance

- Developed an adoption score method, using previous study (Fleiter 2012, Hanes, 2017).
- Quantified monetary and non-monetary benefits based on three categories:
 - Relative advantage
 - Technical context
 - Information context
- Results support market diffusion of emerging technologies/approaches

Precursor Model	Project Model	Notes	Weight	Notes
Relativ	ve advantage	Economic and other monetary benefits, costs	0.46	Primary - cost, savings, investment
IRR	IRR	The expected compound annual rate of return that will be earned on a project or investment. The higher an internal rate of return, the more desirable an investment is to undertake.	0.06	IRR is uniform for investments of varying types and can be used to rank multiple prospective investments or projects on a relatively even basis.
No analog	NPV	The value (in dollars) of all future cash flows (+ & -) over the entire life of an investment, discounted to the present (here, 7%). NPV of 0 means the inflows equal the outflows.	0.06	A total dollar figure representing the positive or negative raw value outcome at the end of the term (here, T=30); can't be used to compare different initial investment quantities.
Payback	Payback	The number of years it takes for a business to recoup an investment. A common metric in the residential construction market, which typically targets 10 years or less as worthwhile.	0.1	Simple to understand, but does not take into account the time value of money or changes in future circumstances; can't be used to compare the value of an energy efficient upgrade against other potential investments.
	Initial material cost	e.g. insulation, sheathing, fasteners, air and water barriers; prefab products or panelized systems	0.12	First-cost is identified in the literature and anecdotally as a primary barrier to adoption
Initial cost	Initial labor cost	all non-material costs	0.12	Though cost in general is a barrier, high labor costs are exacerbated by system complexity and novel materials and methods; higher labor costs potentially indicate opportunity for cost compression
Non-energy benefits	No analog	Could have been new siding (universal), or a secondary performance attribute like added strength or fire resistance (need-specific)		
Techr	nical context	Adoption and implementation	0.39	Secondary - practical considerations
Distance to core process	Ease of installation	From the constructability index developed by the UMN team in the course of building the test walls - both complexity and number of steps.	0.15	This subjective assessment was for building and installing the test walls; did not account for greater complexities associated with whole-house projects.
Type of modification	No analog	??? Would be uniform for all configurations		
Scope of impact	Energy savings	Simulated total energy cost savings for each wall system in each climate zone (T=30- yrs)	0.15	Energy savings can be associated with reduced carbon emissions. Raw energy savings often contribute to above-code certifications and local utility program incentives.
Lifetime	Mold index	The mold risk index in each climate zone, determined by hygrothermal modeling; a binary variable: pass/fail (1/0)	0.09	Climate zone/wall configurations with mold indices above 3 should not be used without modification to ensure moisture durability.
Information context		Knowledge required for implementation	0.15	Tertiary - potential for improvement
Transaction costs	No analog	No attempt made to determine; closest may be something like marketing or franchising		
Knowledge for planning, implementation	Speed of installation (proxy for workforce knowledge)	Walls that are faster to install indicate a faster, easier training process for the workforce.	0.1	Walls that are faster to install indicate a faster, easier training process for the workforce.
Diffusion progress	Ease of acquisition	The availability of the material, product, trained contractor, or specialized installation equipment at the time of the project indicates current acceptance in the market.	0.05	Ubiquitous materials, readily available work crews, and standard tools contribute to on-time scheduling and low, local pricing.
Sectoral applicability	No analog	???		

Adoption Score Results

\$14.50-\$22/ft²

<\$2/ft²

B: Drill-&-Fill Cellulose (der	nse-pack)
Baltimore, MD	0.90
Alberquerque, NM	0.91
Salem, OR	0.94
Chicago, IL	0.90
Boise, ID	0.90
Burlington, VT	0.94
Helena, MT	0.94

FG, high-dens) і і
Baltimore, MD	0.97
Alberquerque, NM	0.89
Salem, OR	0.85
Chicago, IL	0.89
Boise, ID	0.89
Burlington, VT	0.98
Helena, MT	0.93

K: Fiberglass Batt + Int Polyiso

	Baltimore, MD	0.84
	Alberquerque, NM	0.84
Ċ / FO	Salem, OR	0.84
Ş4.5U-	Chicago, IL	0.92
¢ς εο /f+2	Boise, ID	0.84
30.30 / Π -	Burlington, VT	0.92
	Helena, MT	0.88

F: Drill-&-fill Cellulose + VIP/Vinyl Siding	
Baltimore, MD	0.75
Alberquerque, NM	0.69
Salem, OR	0.77
Chicago, IL	0.82
Boise, ID	0.86
Burlington, VT	0.76
Helena, MT	0.82

Helena, MT	0.82
G: Exterior Mineral Fiber Board	
Baltimore, MD	0.70
Alberquerque, NM	0.62
Salem, OR	0.65
Chicago, IL	0.71
Boise, ID	0.67
Burlington, VT	0.81
Helena, MT	0.75

System	
Baltimore, MD	0.90
Alberquerque, NM	0.85
Salem, OR	0.89
Chicago, IL	0.93
Boise, ID	0.85
Burlington, VT	0.91
Helena, MT	0.86
L: Drill-&-Fill FG	

+ Ext Polyiso

E: Drill-&-fill Cellulose + Ext XPS

0.84

0.71

0.76

0.84

0.71

0.86

0.80

0.69

0.63

0.66 0.74

0.66

0.80

0.74

Baltimore, MD

Salem, OR

Chicago, IL

Burlington, VT

Baltimore, MD Alberquerque, NM

Salem, OR

Chicago, IL Boise, ID

Burlington, VT

Helena, MT

Helena, MT

Boise, ID

Alberquerque, NM

N: Pre-fab Ext PU/Vinyl Block

cc-SPF)	proprietary
Baltimore, MD	0.85
Alberquerque, NM	0.80
Salem, OR	0.85
Chicago, IL	0.89
Boise, ID	0.80
Burlington, VT	0.89
Helena, MT	0.87

P: FG Batt + XPS + OSB Break Shear Wa	(Thermal all)
Baltimore, MD	0.78
Alberquerque, NM	0.64
Salem, OR	0.70
Chicago, IL	0.78
Boise, ID	0.64
Burlington, VT	0.81
Helena, MT	0.71

D: Pre-fab Ext EPS (panel w/struts)	
Baltimore, MD	0.65
Alberquerque, NM	0.65
Salem, OR	0.67
Chicago, IL	0.75
Boise, ID	0.68
Burlington, VT	0.79
Helena, MT	0.75

O: Drill-&-Fill F	G
+ Ext FG Board	1
Baltimore, MD	0.81
Alberquerque, NM	0.69
Salem, OR	0.74
Chicago, IL	0.81
Boise, ID	0.69
Burlington, VT	0.84
Helena, MT	0.74

H: Exterior gEPS Structural Panel System	
Baltimore, MD	0.64
Alberquerque, NM	0.58
Salem, OR	0.62
Chicago, IL	0.66
Boise, ID	0.62
Burlington, VT	0.74
Helena, MT	0.70

\$45/ft ²

M: Pre-fab Ext EPS/EIFS Pane	el
System	
Baltimore, MD	0.6
Alberquerque, NM	0.5
Salem, OR	0.5
Chicago, IL	0.6
Boise, ID	0.5
Burlington, VT	0.6
Helena, MT	0.5

Primary Findings

- The mold index was less than 3 for most walls in most climate zones; care should be taken for both Wall B (drill and fill cellulose) and Wall J (drill-and-fill fiberglass) in Subarctic, Very Cold and Marine climates.
- Energy modeling results showed that the climate zones with the highest potential for retrofit savings are those which are heating-dominated (i.e., Cold and Very Cold climate designations) with heating and cooling energy use intensity (EUI) savings due to the wall retrofits alone ranging from 21.5% to 38.2%.
- Five of the studied wall upgrades can be built for between \$1.90 and \$6.30 per square foot of enclosure. These same walls provide strong, double-digit IRRs and Simple Payback periods of less than 10 years in cold climates.

Primary Findings (cont.)

- Lower cost wall upgrades typically pay back faster, despite producing more modest energy savings.
- Prefabricated products (Walls D, F, H and N) provide a degree of predictability and efficiency that could possibly offset their cost premiums.
- Wall thickness is an important issue. Even for the test building, thicker walls required more attention to detail at top and bottom and edge connections.
- Energy and cost savings potential is the greatest in cold climates.

4 stud wall, insulation

Wall N (B10 W1)

Garrett's Comments

- Cost is, by far, the biggest driver of Adoption Scores. So we need to make exterior retrofits much, much cheaper (prefabrication / materials innovations).
- Air leakage is a tremendously important variable driving energy savings. It unfortunately could not be appropriately measured in this experiment, and systems with similar energy savings in this project could actually differ significantly based on the air tightness improvement. We need to retrofit whole houses to continue that research—any volunteers?

Whew. Any questions?

Garrett Mosiman mosi0019@umn.edu

Pacific Northwest

