

Designing Foam-Free Passive House Assemblies in Climate Zone 6 & 7

Floris Keverling Buisman CEO - 475

- Master's degree in Architecture + Real Estate Dev from the Delft University of Technology, Registered Architect in the Netherlands

- Served on NYC Building Code Committees

- Certified, consulted on and built several Passive House projects in New York and Vermont

- Adjunct professor at The City College of New York
- Certified WUFI ORNL Instructor

-Bicycle advocate

What is High Performance?

- Comfortable
- Healthy
- Energy efficient
- Resilient
- Affordable
- Beautiful

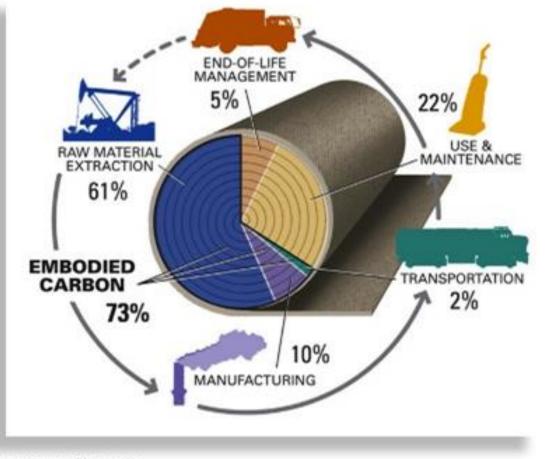
Foam – Less is Best

NCO_Dangerous Toxic Ingredients OCN **Unacceptable Fire Accelerant** NCO This fire started during installation due to an excessive exothermic reaction NCO High Level of Embodied Energy & Global Warming OC. Potential Pure MDI's **Unreliable Performance** 120.00 XPF 50% 100.00 CCSPE 50% Payback (years) 80.00 **Reversible**? 60.00 40.00 20.00 Other Insulation 0 10 20 40 50 60 **Final R-Value**

475.supply

800-995-6329

How to Mitigate Climate Change

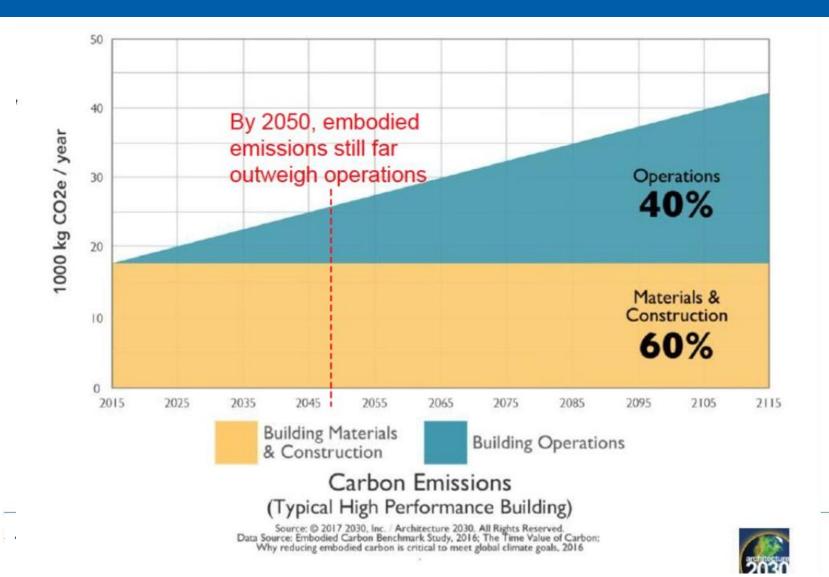


Credit: Passive House Accelerator

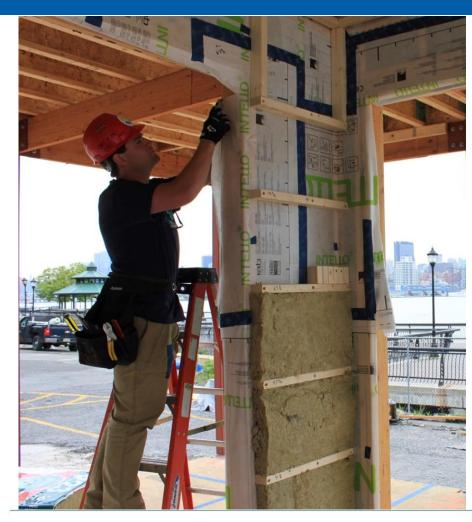
"Global climate change is the challenge of our generation."

- Mayor Bill de Blasio, One City: Built to Last

Embodied Energy vs. Carbon Footprint


Embodied Energy = Sum of all energy needed to produce any product, as if that energy was incorporated or "embodied" into the product itself.

Carbon Footprint = Sum of all greenhouse gases emitted by the full life cycle of a product.


> HIGH PERFORMANCE BUILDING SUBJECT

Source: Building Green

Why Embodied Carbon Matters

Components of High Performance

- 1. Robust enclosure
- 2. Quality daylighting
- 3. Less toxic and more

sustainable.

- 4. Healthy indoor air quality
- 5. More predictable and durable
- 6. Low Energy "Zero Energy

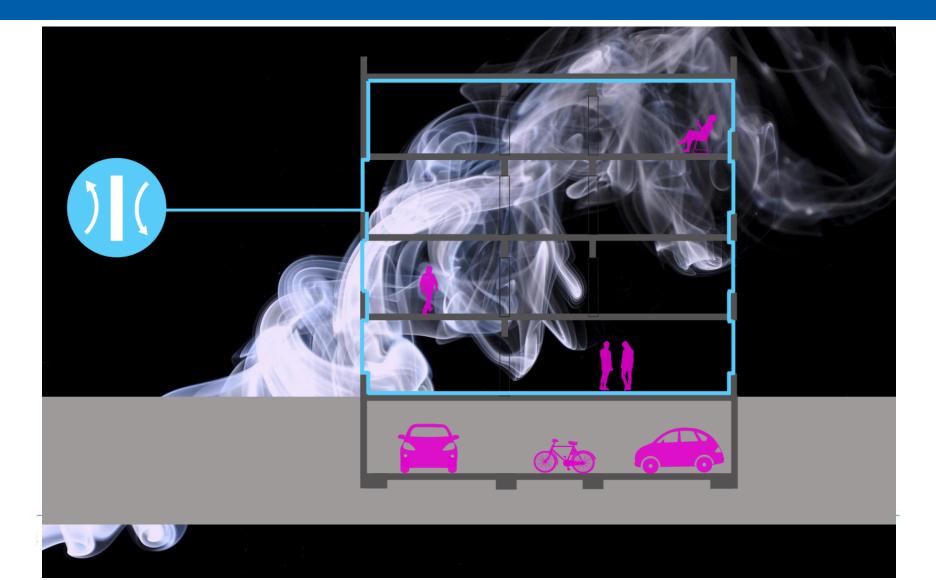
Ready"

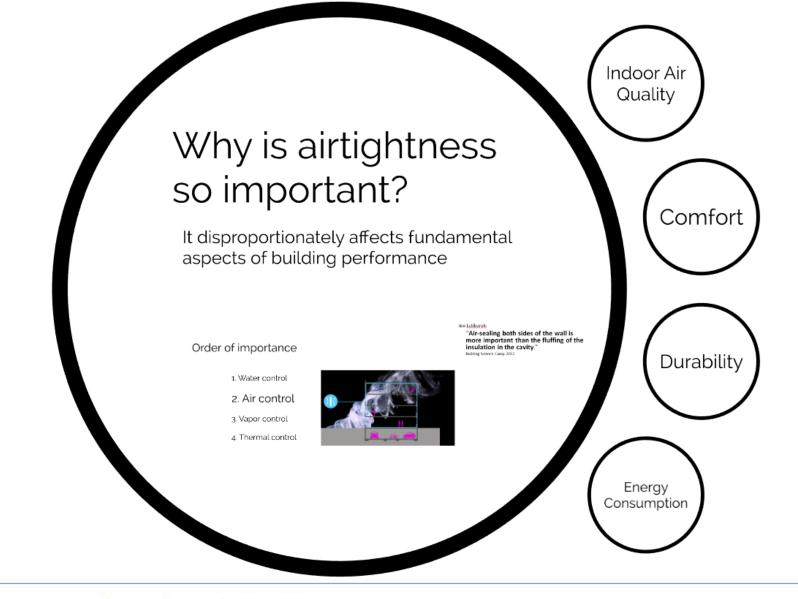
The Order of Importance

Enclosure Performance

- 1. WATER CONTROL- shed it.
- 2. Ever greater **AIR CONTROL** toward Passive House
- 3. More resilient VAPOR CONTROL avoid mold
- 4. THERMAL CONTROL toward thermal bridge free

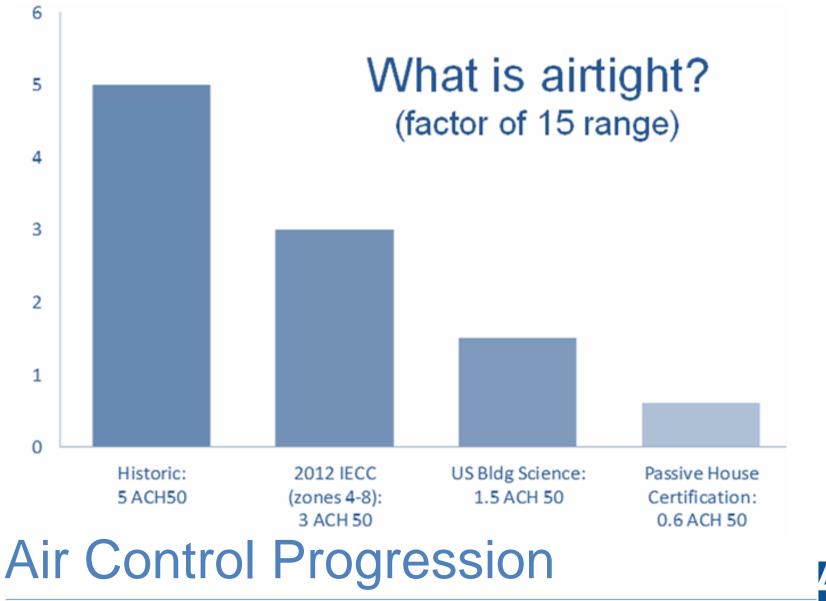
WATER CONTROL – Shed it


Water Control



Or it will destroy your building...

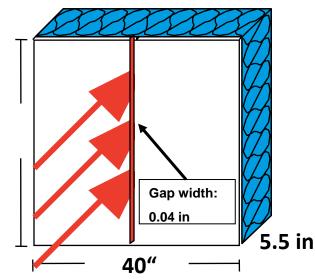
AIR CONTROL



Air Control

Air Control: Heating Load/Demand Correlation

Passive House verification					
Building End-of-Terrace Passive House	e Kranichstein		ACH50	Annual Heating Demand	Heating Load
Street Postcode/City D-64289 Darmstadt Country: Germany/Hesse Building Type Terraced House/Dwelling Climate: Standard Germany			0.22 ACH50	14 kWh/(m²a)	10 W/m ²
Number of Dwelling Units: 1 Int Enclosed Volume V ₂ : 665.0 Number of Occupants: 4.5	rior Temperature: 20.0 °C ternal Heat Gains: 2.1 W/r		0.60 ACH50	15.4 kWh/(m²a)	12 W/m
Specific building demands with reference to Treated floor area Space heating Annual heating demand Heating load	the treated floor area	use: 0 Requirements 15 kWh/(m²a) yes 10 W/m² ves	1.50 ACH50	20 km 1ed Pas 1011se	sive
Space cooling Overall specific space cooling demand Cooling load Frequency of overheating (> 25 °C)	I kWh/(m²a) 9 W/m² 0.6 %	10 W/m² yes 20 kWh/(m²a) yes yes -	300	jea re	
Primary Energy Space heating and cooling, dehumidification, household electricity. DHW, space heating and auxiliary electricity Specific primary energy reduction through solar electricity	61 kWh/(m²a) 34 kWh/(m²a) kWh/(m²a)	120 kWh/(m²a) yes	UUL	ieu House	50 W/m²
Infiltration air change rate					
Wind protection coefficient, e Wind protection coefficient, f		- 0.07 - 15			
Air Change Rate at Press. Test	n _s 1/h	- 15 - 0.22			
Sheet1 Verification Areas U-List U-Values Groun	nd 🖉 Windows 🖉 WinType 🖉 Sł	rauling 🔬 venulation 🖉 Audicional Ven			


Air Control: Heating Load/Demand Correlation

Passive House verification			
Bulding: End-of-Terrace Passive House Kranichstein	юпоч	Annual Heating Demand	Heating Load
Street Postcode/City: D-64289 Darmstadt Country: Germany/Hesse Building Type: Terraced House/Dwelling Cimate Standard Germany	0.22 ACH50	14 kWh/(m²a)	10 W/m²
Year of Construction: 1991 Interior Temperature: 20.0 *C Number of Dwelling Units: 1 Internal Heat Gains: 2.1 W/m² Enclosed Volume V ₂ : 665.0 Number of Occupants: 4.5	0.60 / H50	15.4 kWh/(m²a)	12 W/m ²
Specific building demands with reference to the treated floor area use: 0 Treated floor area 156.0 m² Requirements Fulfilled?* Space heating Annual heating demand 14 kWh/(m²a) 15 kWh/(m²a) yes Heating load 10 W/m² 10 W/m² 10 W/m² yes	1.50 AC 150	20 kWh/(m²a)	17 W/m²
Space cooling Overall specific space cooling demand Cooling load 1 kWh/(m²a) 20 kWh/(m²a) yes Frequency of overheating (> 25 °C) 0.6 % - - -	3.00 • 150	27 kWh/(m²a)	25 W/m²
Primary Energy Space heating and cooling. dehumidification, household electricity. 61 kWh/(m²a) 120 kWh/(m²a) DHW, space heating and auxiliary electricity 34 kWh/(m²a) - - Specific primary energy reduction through solar electricity kWh/(m²a) - - -	5.00 ACH50	38 kWh/(m²a)	36 W/m²
Infiltration air change rate			I
Wind protection coefficient, e - 0.07 Wind protection coefficient, f - 15 Air Change Rate at Press. Test n ₅ 1/h - 0.22			
Sheet1 Verification Areas / U-List / U-Values / Ground / Windows / WinType / Shading / Ventilation / Additional Ve	 ht		

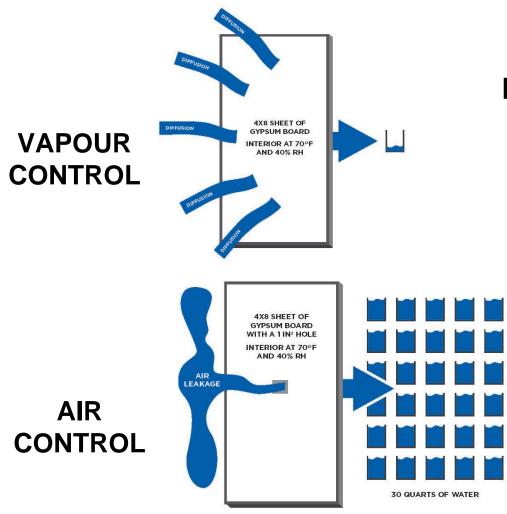
Wetting of the enclosure from

inside Moisture Load: Diffusion and Convection

40"

Difference of 1600x

Without gap: Diffusion 0.3 perms: e.g. Intelligent vapor retarder: Without a gap: Diffusion 35 perms e.g. Painted sheetrock:

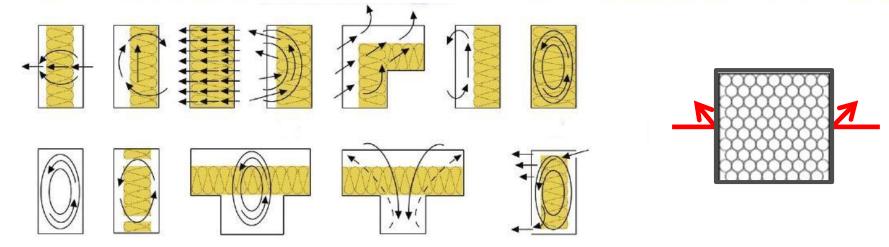

0.017oz water/10 sqft x24h

5.3 oz water/ 10 sqft x24h

With a 0.04 in gap: No vapor diffusion

Only vapor convection: 28.2 oz water/3,17 ft x 24h

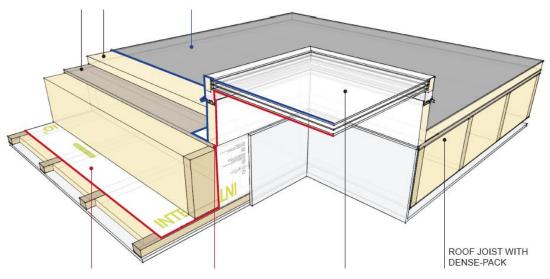
800-995-6329

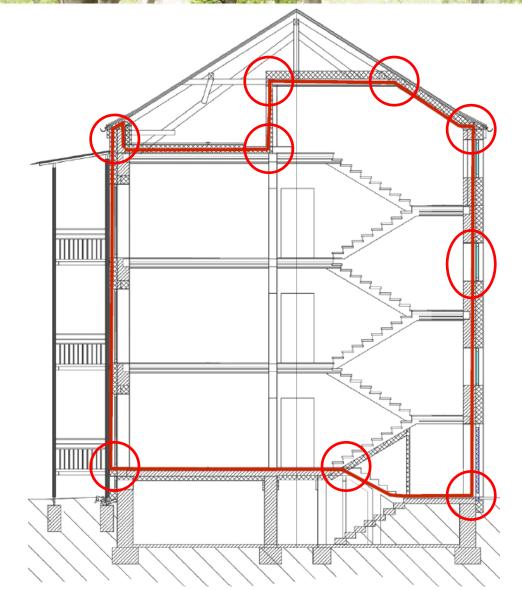

475.supply

Disproportionately effects:

- 1. Indoor air quality: control the air to control the quality
- 2. Comfort: drafts are uncomfortable
- 3. Air transported wetting: a bigger liability than diffusion wetting
- 4. Heat loss & energy efficiency

Air Control Fundamentally Effective 47




Mark Siddall

To optimize insulation **surround it** with airtightness on all 6 sides.

Primary Inboard Secondary Outboard (windtight)

Thermal bypass

- 1. Robust materials
- 2. Simplify the details
- 3. Consider the sequence
- 4. Seal penetrations
- 5. Repairable and verified
- 6. Protected

Continuity: In Design & Construction

ASTM E2357 Testing

Inboard:

- Primary Air Barrier
- Tightest PHI Certified Membrane System
- Vapor Control Layer

Outboard:

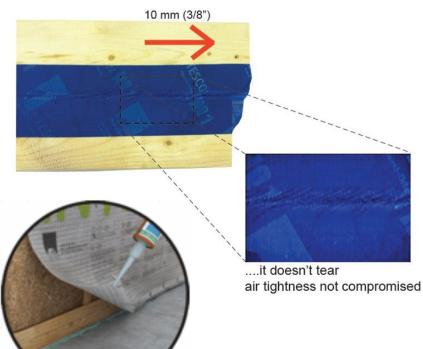
- Secondary Air Barrier
- vapor open-
- FLATROOF membrane

475.supply | 800-995-6329

ASTM E2357 Testing

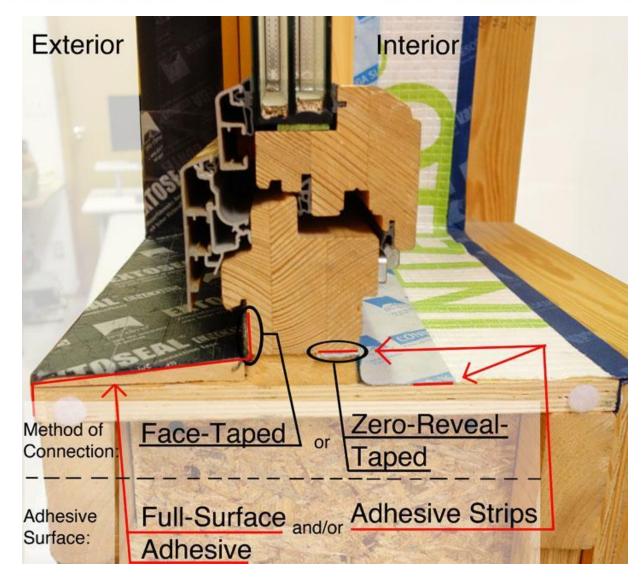
Robust Air Barriers? (Lab-) Tested?!

Foam is Not airtight or optimal



Traditional

 Many sealants dry, embrittle and fail over time



New Approach

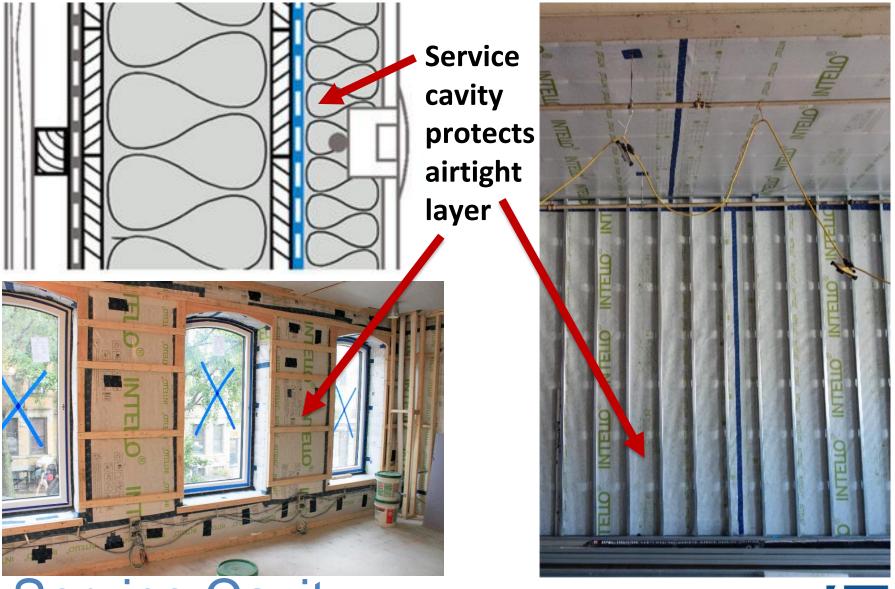
Robust Connections are Essential

Window integration

HIGH PERFORMANCE DAVLIGHT SOLUTION

Air Control

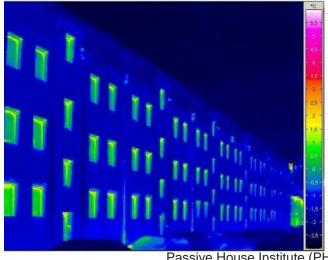
Allow for room to gasket properly



Wire and Pipe Penetration Sealing



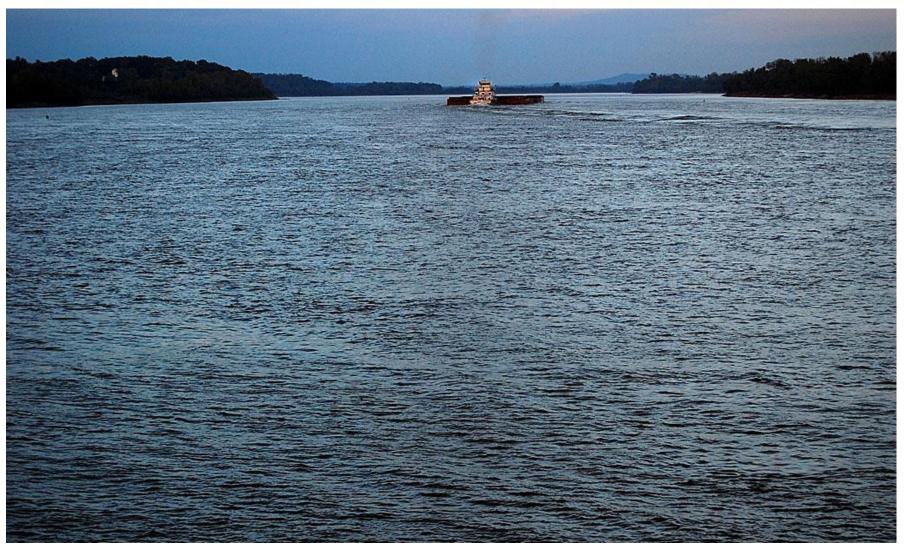
475.supply | 800-995-6329


HIGH PERFORMANCE BUILDING SUPPLY

VAPOR CONTROL

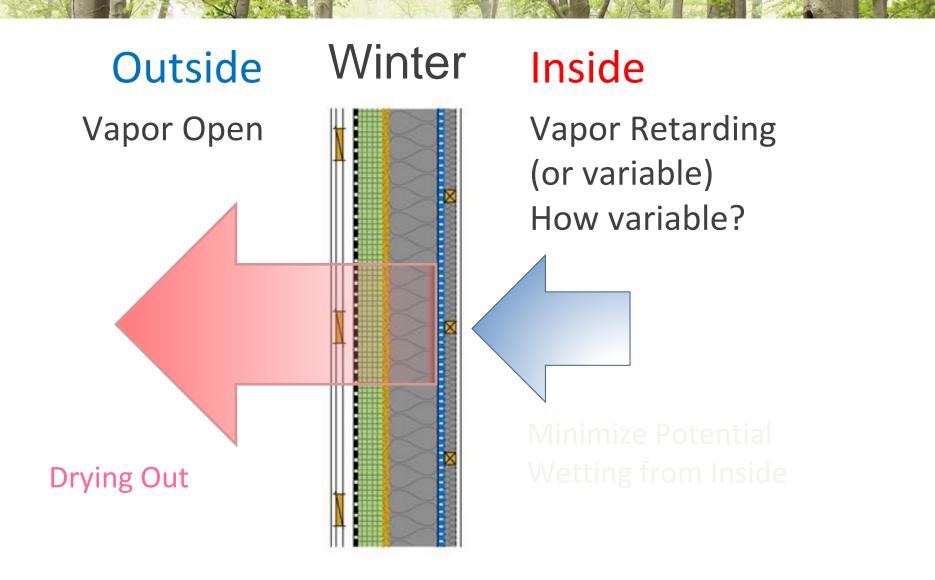
Passive House Institute (PHI)

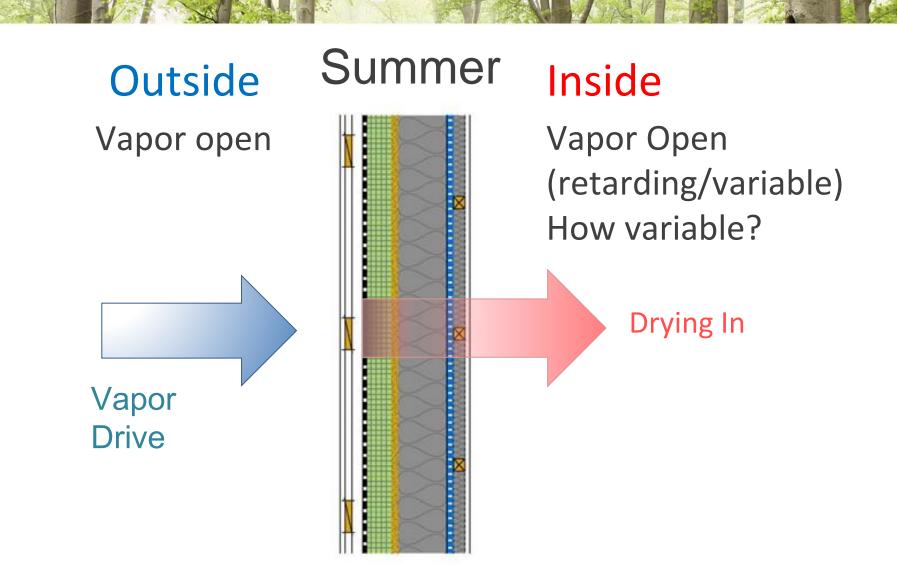
Passive House Institute (PHI)



Pinkbrownstone

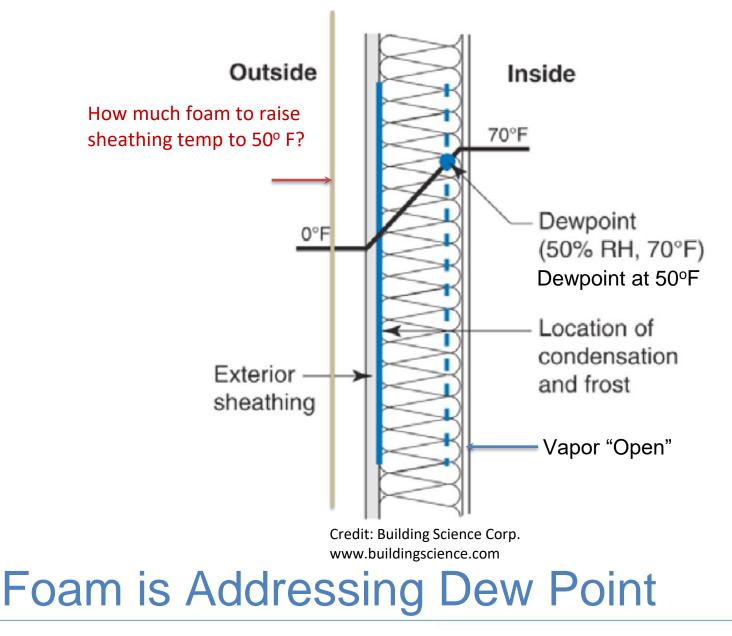
Poorly insulated buildings heat themselves dry. Well built assemblies dry through vapor diffusion. "Stuff happens so build a moisture tolerant design"

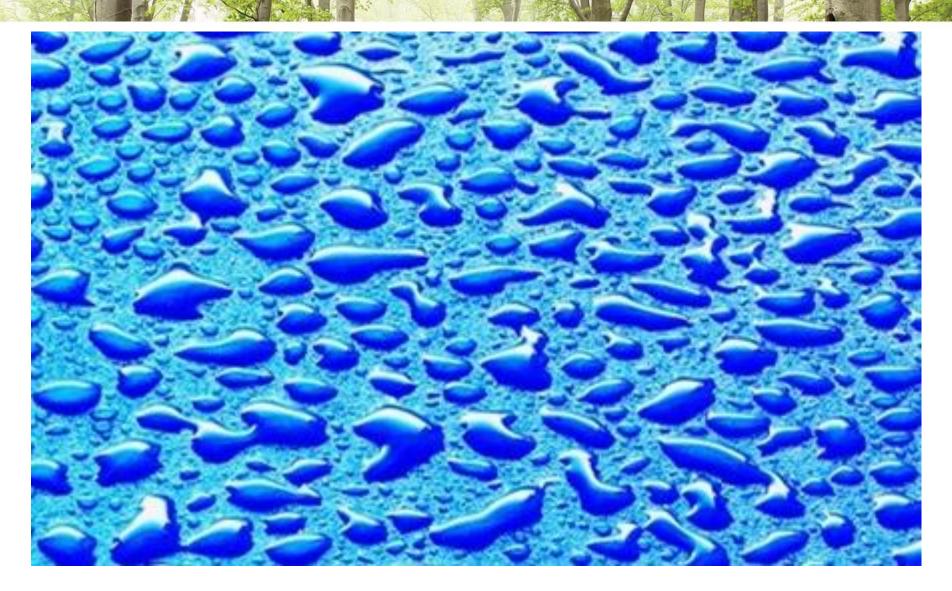

Smart Vapor Control


Work with the Dominant Vapor Drive... Go with the Flow

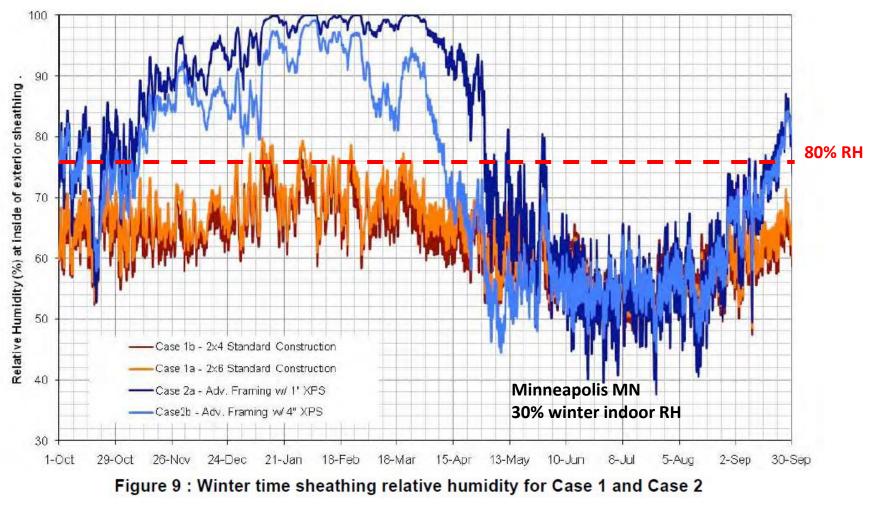
Winter Drives Outward

Summer Drives Inward




Credit: Synergy Companies Construction LLC

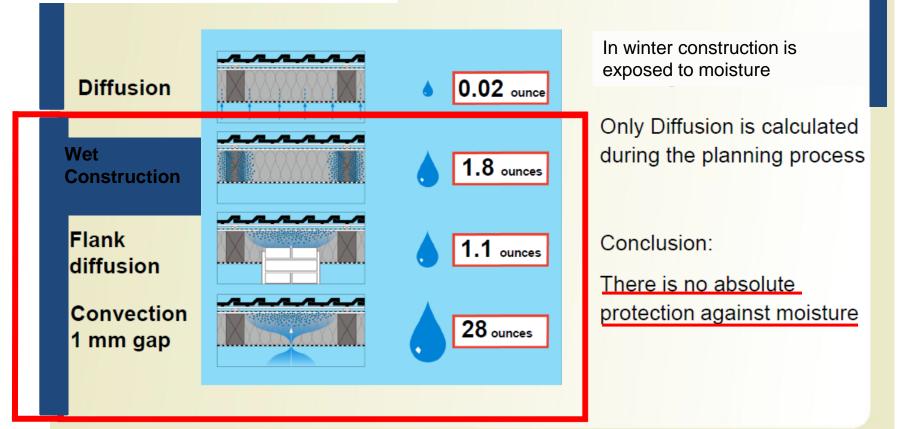
Why are we installing vapor dams?



Foam is Hydrophobic and doesn't aid drying

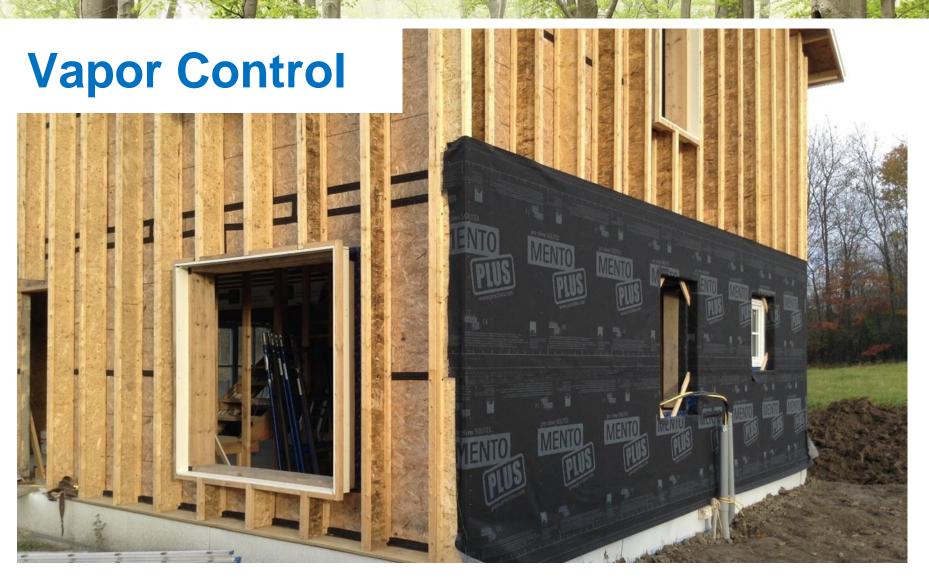
Credit: Building Science Corp, Building America Special Research Project: High R Walls Case Study Analysis

Foam can make wetness


Vapor Control

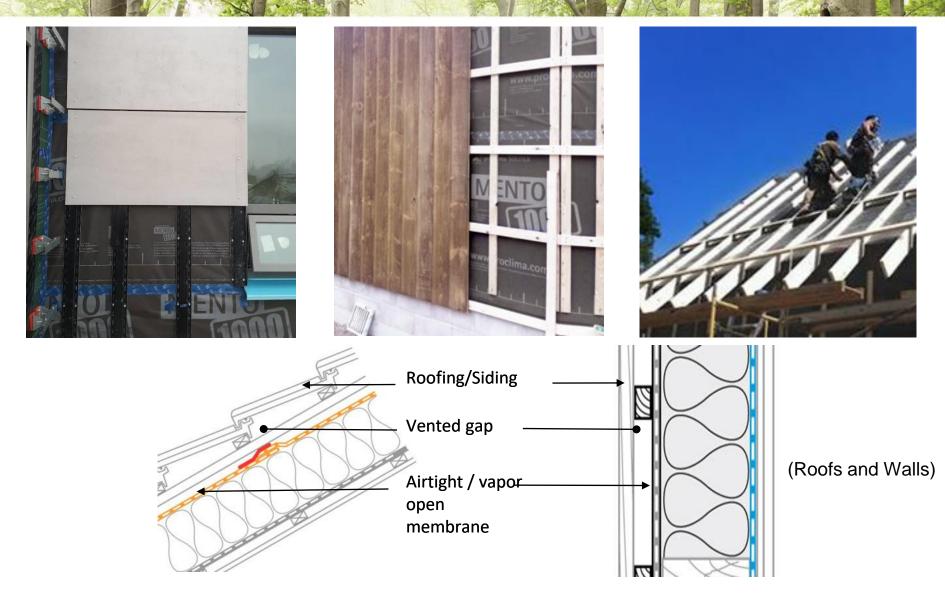
Foam makes enclosures more intolerant

Vapor Control


Note: Many sources of moisture

Vapor Open Sheathing at Exterior 4-

Or No (exterior) Sheathing

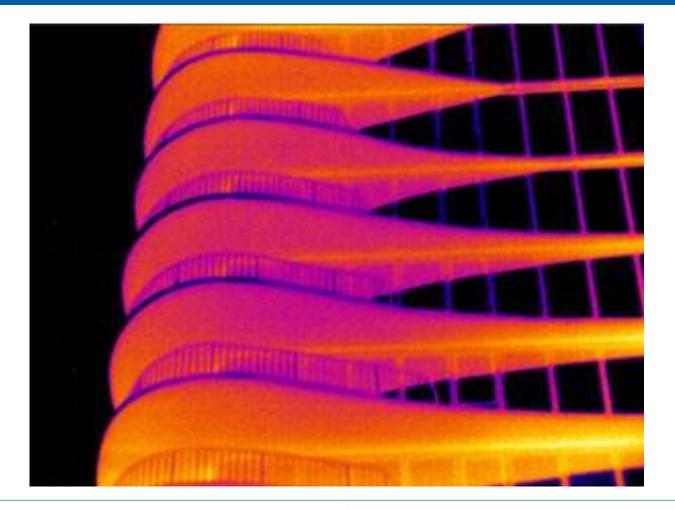


Vapor Control

Or No Sheathing at All!

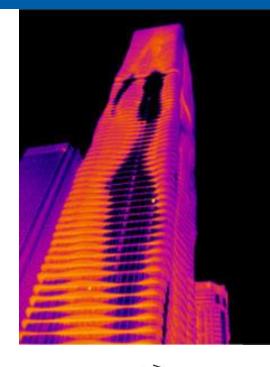
Back Vented Rain Screens

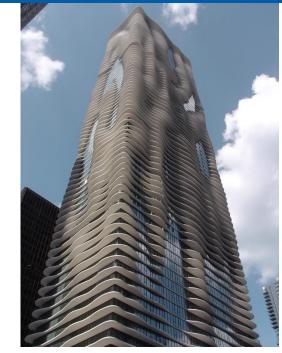
Traditional Vapor barrier tape


At sill, high quality modified butyl-acrylic tape - is vapor closed but doesn't lap over ext >1" no vapor damming!

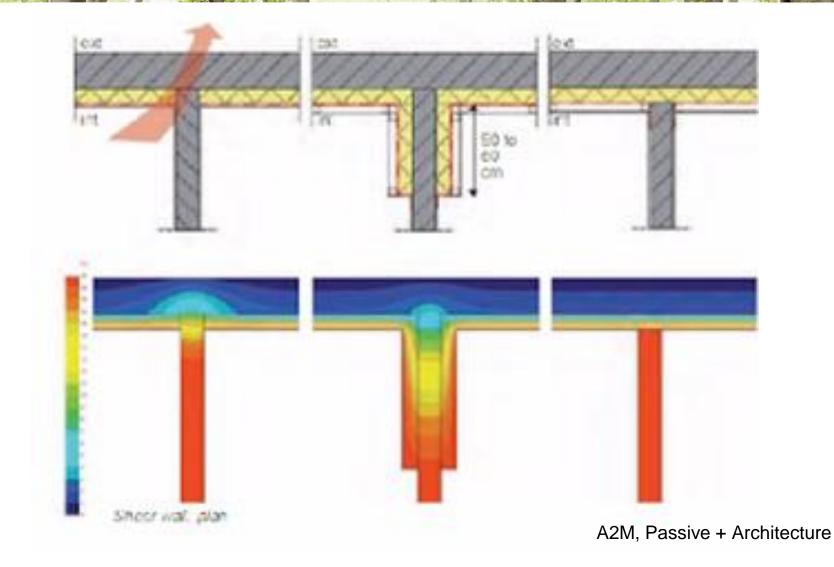
New Options Vapor permeable tape Vapor Open **Tapes And** Membranes

Don't Dam Moisture Around Openings




THERMAL CONTROL

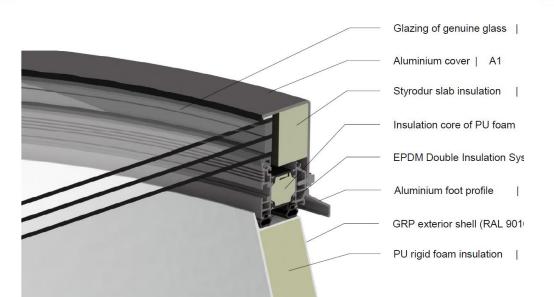
THERMAL CONTROL

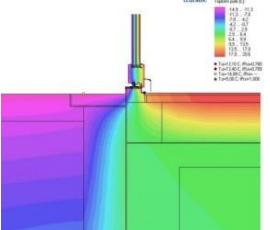

- Enclosure
 - Continuous insulation
 - Thermal bridge free joints and penetrations
- THINK
 THERMOS

Aqua Tower, Chicago

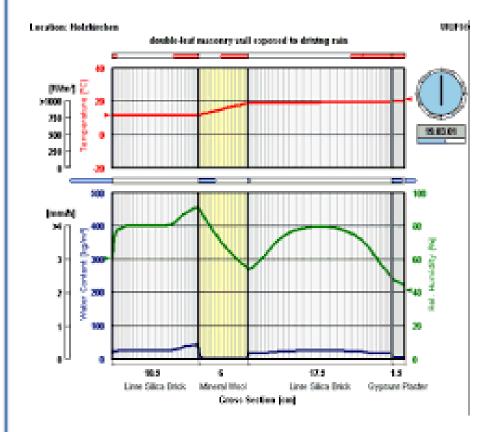
Thermal Breaks

Consider an Insulation that Helps Drying





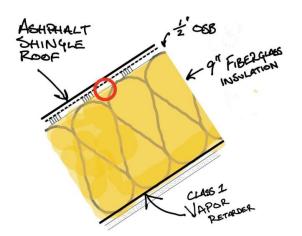
Outboard Vapor Open Insulation



Thermal Breaks (...almost foam free)

About Using WUFI Pro

- A relative risk assessment not an absolute risk assessment
- Examining for high moisture risk at critical components
- 5-10 year analysis
- · Using Moisture Content as proxy
 - <15%MC = safe/low risk OSB, plywood</p>
 - <18%MC = acceptable risk for wood> OSB?
 - 20%MC = danger threshold, significant risk also for solid wood
 - ->20%MC = rising risks
- Higher insulation values = Higher risks
- Don't design safety factors out of the wall: maintain drying reserves

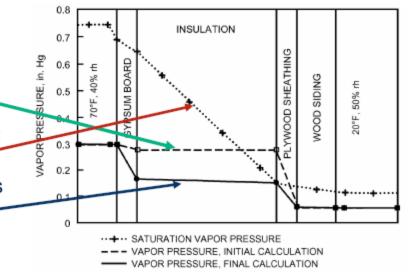


Moisture-Driven Damages

- Condensation
- Wood rot
- Corrosion
- Interstitial mold
- Freeze-thaw

Design Methods

Dewpoint vs Dynamic Method (ASHRAE 160)



Winter time snap shot....

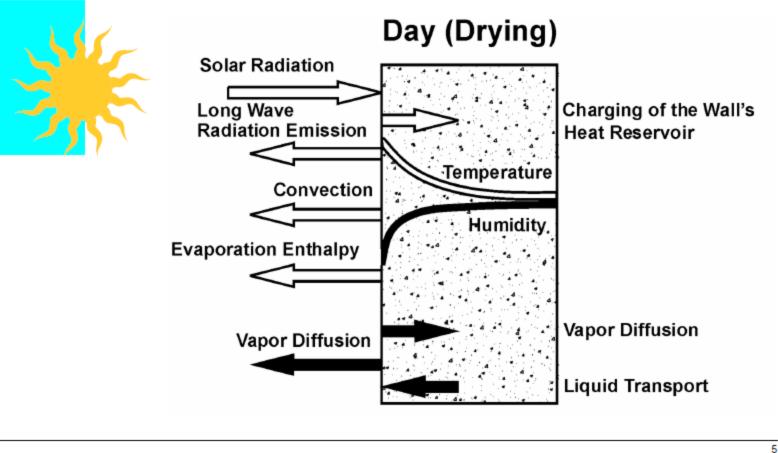
From steady-state to transient

Glaser / Dew Point Method

- Plot vapor pressure gradient for steadystate conditions
- Determine temperature gradient and plot saturation pressure gradient
- Adjust vapor pressure gradient so it does not cross saturation pressure and calculate from that influx and efflux of moisture

Problems

- no heat and moisture storage
- no liquid flow
- no coupling of heat and moisture transfer

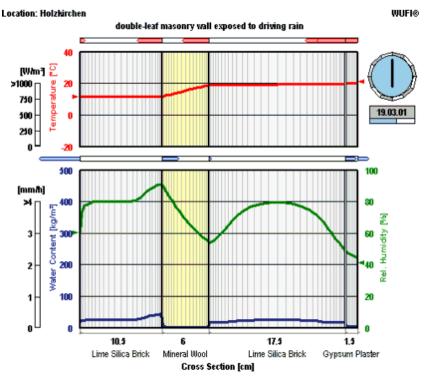

Fraunhofer Institut Bauphysik

Inputs

Interior Conditions	Exterior Conditions	Interstitial Conditions
(Dynamic)	(Dewpoint vs Dynamic)	(Dynamic)
 Occupancy ACH50 Ventilation rate 	 T (fixed vs hourly) RH (fixed vs hourly) Wind (none vs dynamic) Rain (none vs dynamic) 	Assumed embedded moisture after construction

Hourly calculations!

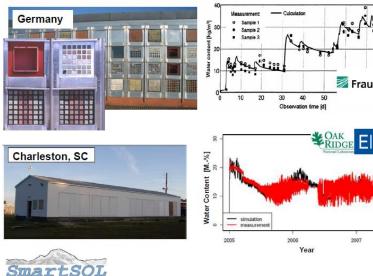
From steady-state to transient

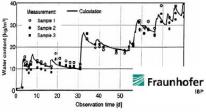


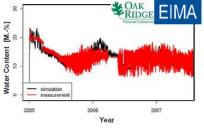
Heat, air and moisture transfer

WUFI: Wärme und Feuchte instationär

- The tool: WUFI Pro (6.3) with plug-ins
- Calculation/assement. To be confident in an assembly design
- Prevents risky assembly, guides design before construction or damages occur
- Code compliance: ASHREA 160p or DIN EN 15026:
 - "design using accepted engineering practice for hygrothermal analysis" as described in 1404.3 (walls) etc.






Performance assements Takes time! Test huts To validate

Computer model....

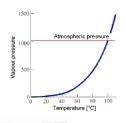
WUFI model validation

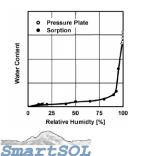
Previous Assessment

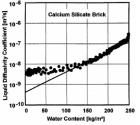
Field tests:

- Solution to climate dilemma
- Very time consuming
- Very expensive
- Search for alternative ways to investigate

hygrothermal performance

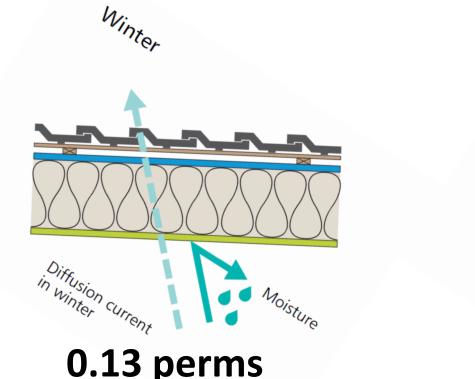


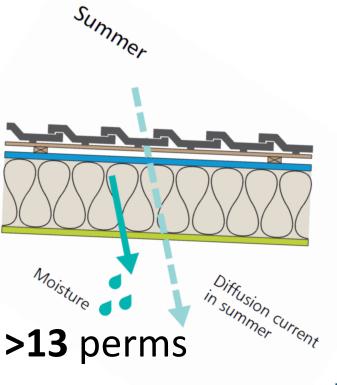



Fraunhofer IBP, Germany

Heat vs. Moisture

Hygrothermal material properties are highly non-linear. (unlike thermal material properties)

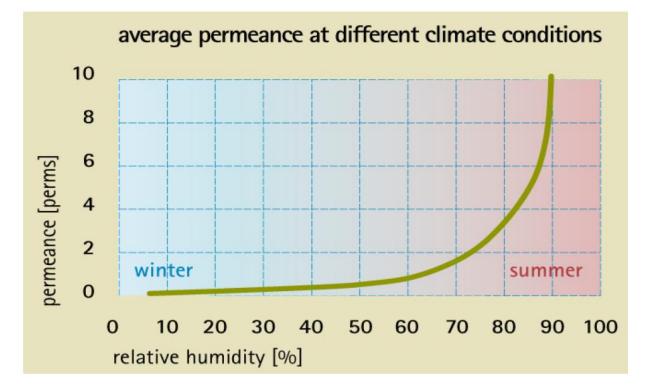

μ


Material values are not static

Fibrous ins can see R-value reduced by factor 10 (from 30 to 70% h2o)

🕡 WUFI materials Search materials 🔎	WUFI → Fraunhofer-IBP → Insulating Materials									×
All Sources	Material Name				Bulk dens [kg/m³]	Porosity [m³/m³]	Heat Cap. [J/kgK]	Therm. C [W/mK]	Vap.Res. [-]	^
Fraunhofer-IBP	Dennert mineral foam insulating board		∆ ₂		r 98	0.9	1000	0.04	2	^
Green and Gravel Roofs	DÄMMSTATTS CI040, KLIMA-TEC-FLOCK, Poesis-Floc, IS	30L OL		-	50	0.95	5 2000) 0.034	1.8	
Masonry Bricks	EPS (heat cond.: 0.04 W/mK - density: 15 kg/m³)				15	0.95	5 1500	0.04	30	~
Mortar and Plaster Natural Stone Wooden Materials; Boards Generic Materials Japan Database MASEA Database, Germany Materials for thermal calculatio MASEA Database, Germany Materials for thermal calculatio Materials for thermal calc	Liquid Transport Coefficient, Suction Liquid Transport Coefficient, Redistribution Water Vapour Diffusion Resistance Factor, moistu Thermal Conductivity, moisture-dependent Thermal Conductivity, temperature-dependent Enthalpy, temperature-dependent	No. 1 2 3 4 5 6 7 8 9 10 11	20 50 100 200 300 400 500 600	[VWI 0	m. Co //mkJ 0.04 0.041 0.043 0.043 0.049 0.07 0.15 0.21 0.29 0.39	0 0.5 0.5 0.0 4.0 0.5 0.3 0.2 0.0 0.0		ed Water Conter	ent [-] 0.8 1	
		12 13			0.5	0		400 600 r Content [kg/m³		
< >	Import Export			Thickr	(ness [m]:	~	Assign	Cancel	Help	

Intelligent vapor retarders: prevent wetting and **promote drying** for **maximum protection (factor 100)**



But when/how - where/why

@foursevenfive | www.foursevenfive.com | 800-995-6329

Vapor Intelligent Membrane

From vapor closed in winter to vapor open in summer <2.2 perms till 70%RH – prevents during winter construction etc Hydrosafe Smart Vapor Control

Moursevenfive | www.foursevenfive.com | 800-995-6329

Project/Case: Montgomery street/11.25 roof with 5.5 cellulose service cavity - solar

,					· · · · ·						
Assemb	ly/Monitor Positions Orientation,	Inclination/Heig	ht Surfac	e Transfer Coeff.	Initial	Conditio	ins				
Layer N	Jame			Thickn. [m]							
	LO PLUS (according to German ap	oroval 2015)		0,001							
		,				Materi	al Data				
Exterior),(0,019	r (Left Side) 0,286	0,0	Interio	or (Right Side) .14				1			
,,,0,013	0,200	0,0			0.7	_		1			
					<u>ଡୁ</u> କ୍ରୁ	Sourc	es, Sinks				
					7	New	Layer				
					₿ <mark>8</mark>	Dup	licate				
					<u></u>	De	lete				
a	🕐 WUFI materials										
	Search materials	$\mathbf{\rho}$									
5	All Sources		٩	Material Name				Bulk [kg/m³]	Poro [m³/m³]	Heat [J/kgK]	Ther [W/mK]
	Fraunhofer-IBP		Fiber Insulat	ion				30	0.99	1880	0.036
	Green and Gravel Roc	Ifs Expanded	l Polystyrene	Insulation				14.8	0.99	1470	0.036
Assign	n Masonry Bricks	Extruded	Polystyrene Ir	nsulation				28.6	0.99	1470	0.025
9	Mortar and Plaster	Material I	nformation	Hygrothermal Fun	ctions						
2		ar									
- Total 1					P	\dded to	DB:				
Thick						Last upd	ate:	-			
	🖶 📑 MASEA Database, Germa										
	Materials for thermal calc	ana									
	Building Boards and S	id lite									
	Concretes										

It's complicated

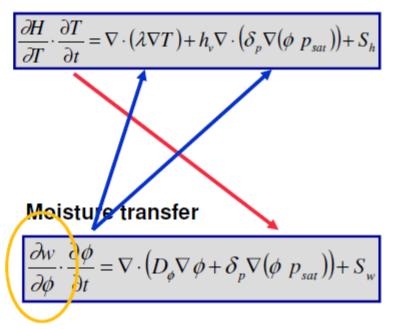
🕖 Layer/Material Data

Hygrothermal Functions Material Information

Layer/Material Name: Densepack cellulose	Densepack cellulose						
Bulk density [kg/m³]:	70	Typical Built-In Moisture [kg/m³]:	12				
Porosity [m³/m³]:	0.95	Layer Thickness [m]:	0.14				
Spec. Heat Capacity [J/kgK]:	2500	Thermal Conductivity, Design Value [VWmK]:					
Thermal Conductivity [W/mK]:	0.04	Color:					
Water Vapour Diffusion Resistance Factor [-]:	1.5						

Moisture Storage Function Water Cont... RH No. Liquid Transport Coefficient, Suction [-] [kg/m²] 600 Liquid Transport Coefficient, Redistribution 0 Water Vapour Diffusion Resistance Factor, moistu... 2 0.35 4.5 Nater Content [kg/m³] Thermal Conductivity, moisture-dependent 0.65 450 3 8 Thermal Conductivity, temperature-dependent 12 4 0.8 18 Enthalpy, temperature-dependent 5 0.93 300 50 6 0.96 Approximate 7 0.98 160 500 8 1 150 0 0.2 0.4 0.8 0 0.6 Relative Humidity [-] Paste into Database Import Export OK Cancel HIGH PERFORMANCE BUILDING SUPPLY

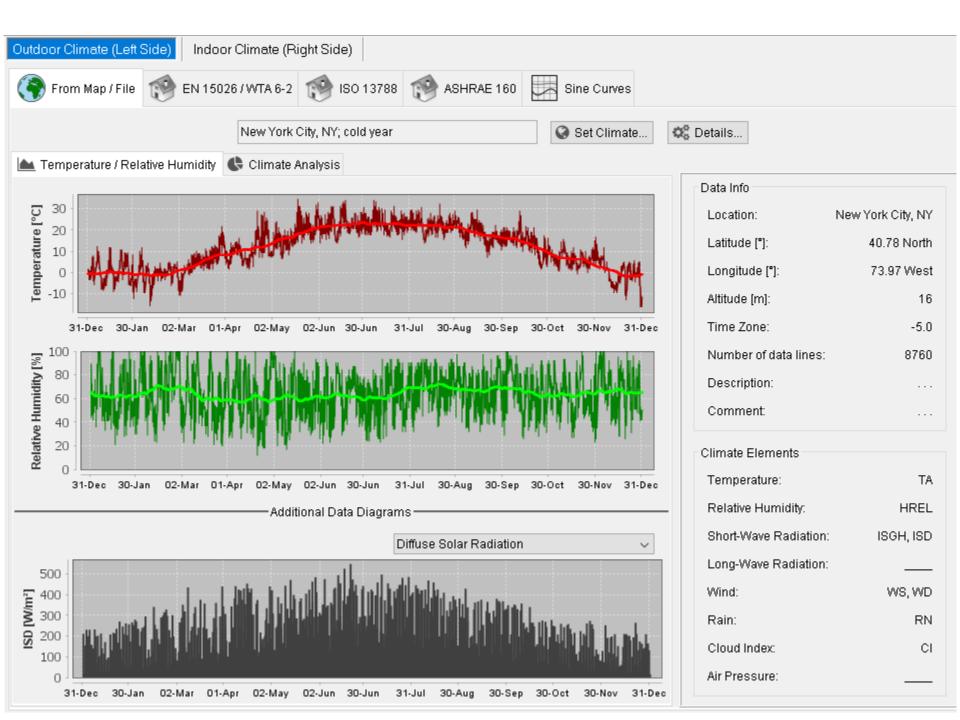
×


Calculation of coupled transport

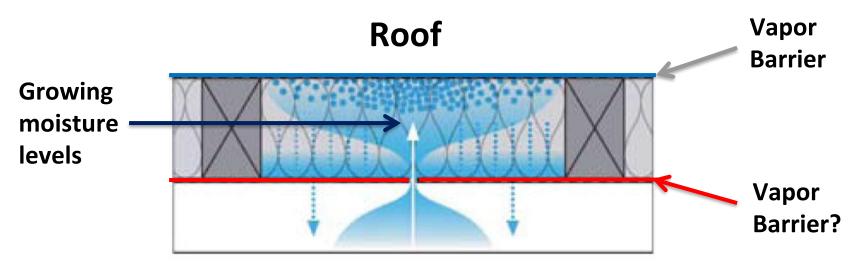
Coupled transport equations

- exponential increase of saturation pressure with temperature
- moisture depending thermal conductivity
- enthalpy flow by vapor diffusion with phase change

Coupled differential equations have to be solved numerically.


Heat transfer

Actually a third Equation!



Often roofs are vapor barriers,

so don't make it worse

(even in mild climates (even in climate zone 4,3), watch out for radiant cooling)

Cathedral Ceiling

Smart Vapor Control

Molecular Sevenfive | www.foursevenfive.com | 800-995-6329

Walls – can be "easy" BACK VENTED SIDING SYSTEM GUTEX MULTITHERM WRB & WINDTIGHT LAYER **OPTIONAL PRO** CLIMA SOLITEX **MENTO 1000**

OR ADHERO AS TEMPORARY WRB

SHEATHING

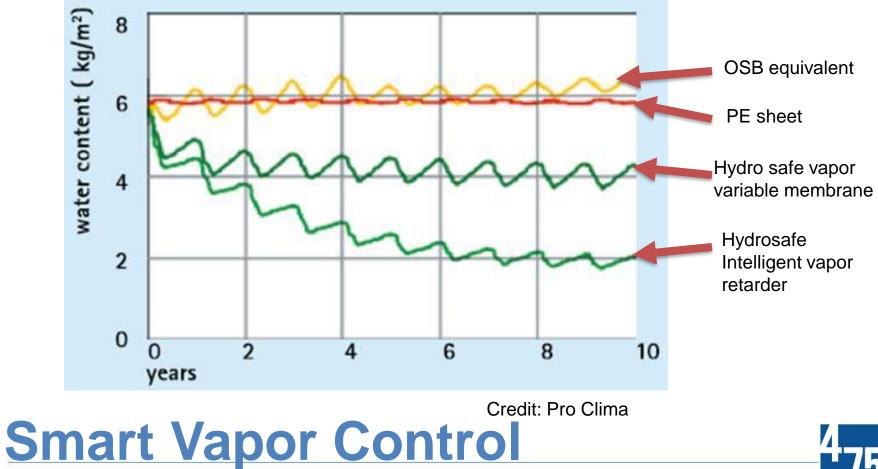
@TEstudioarch

Vented rain screened walls/roofs with PH interior airtightness Better than PERFECT – 6 sides & dry both ways

@foursevenfive | www.foursevenfive.com | 800-995-6329

Roofs are often vapor closed

Asphalt and flatroofs....prone to damage Can't dry outwards...


Credit: FineHomebuilding

▶ @foursevenfive | www.foursevenfive.com | 800-995-6329

Maximize drying potential

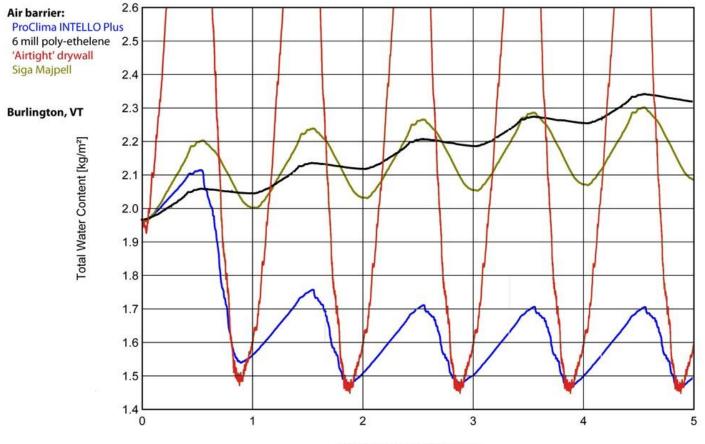
Study: Steep pitched, north facing roof at high altitude (a worst case scenario).

@foursevenfive | www.foursevenfive.com | 800-995-6329

Intelligent vapor retarder

Ideally suited for:

- 1. Meeting Code for Class II vapor retarders.
- 2. Assemblies with significant vapor retarding or vapor closed outboard layers.
- 3. Historic Masonry Retrofits
- 4. Cellulous and fibrous insulation
- 5. Highly insulated assemblies
- 6. Where increased drying reserves are desired **Smart Vapor Control**

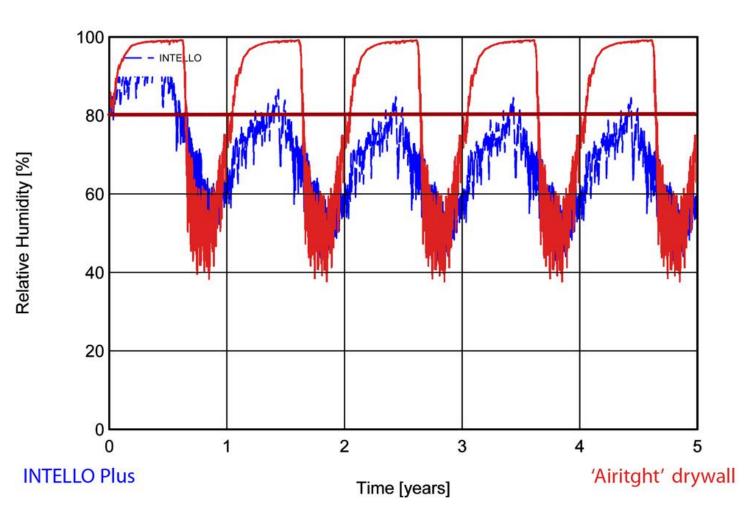


Moursevenfive | www.foursevenfive.com | 800-995-6329

What about ADA?

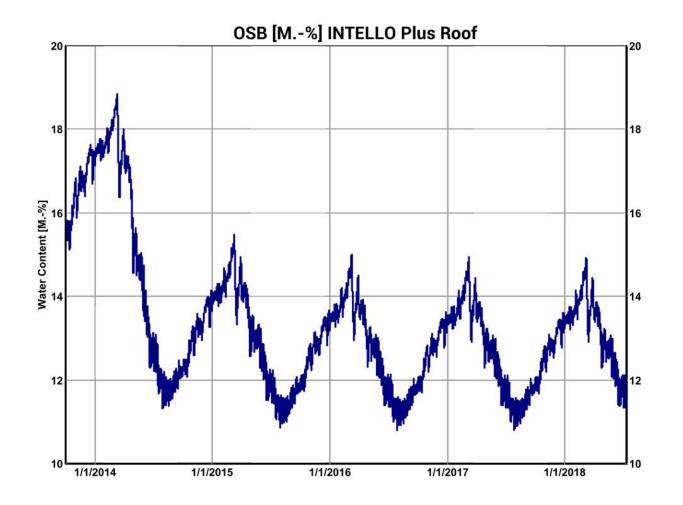
Unvented Sloped Roof w/ Fiberglass

Study: 10:12 pitch, north facing roof at high altitude (a worst case scenario)


Time (oct start date) [years]

See blog post: Yes, Unvented Roof Assemblies Can Be Insulated With Fiberglass – A WUFI Post

ADA vs Intelligence – what is save M%

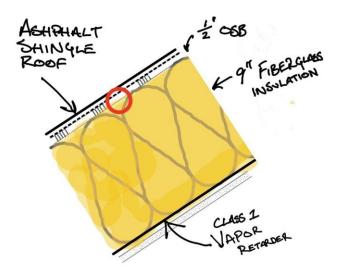

Study: 10:12 pitch, north facing roof at high altitude (a worst case scenario)

ADA vs Intelligence – what is save M%

Study: 10:12 pitch, north facing roof at high altitude (a worst case scenario)

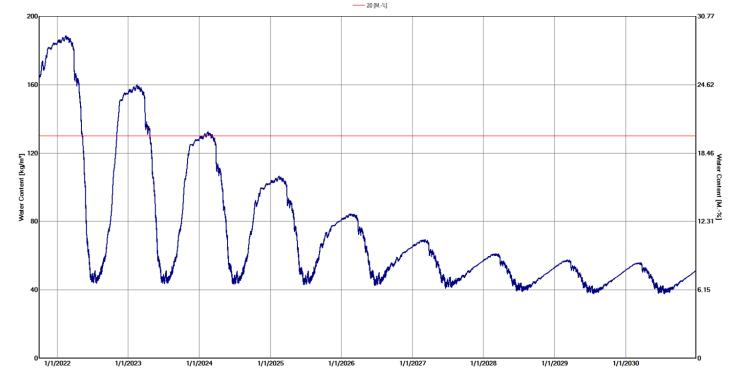
Roof WUFI model

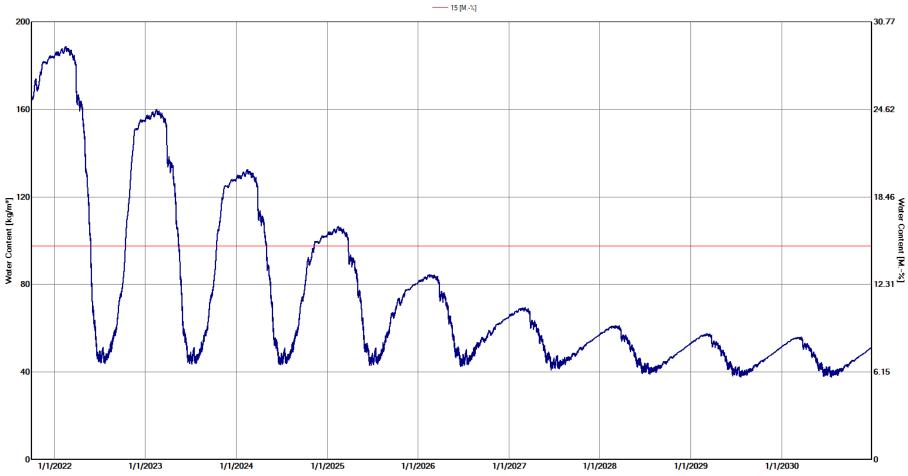
Vapor closed materials meet hygroscopic materials in roof

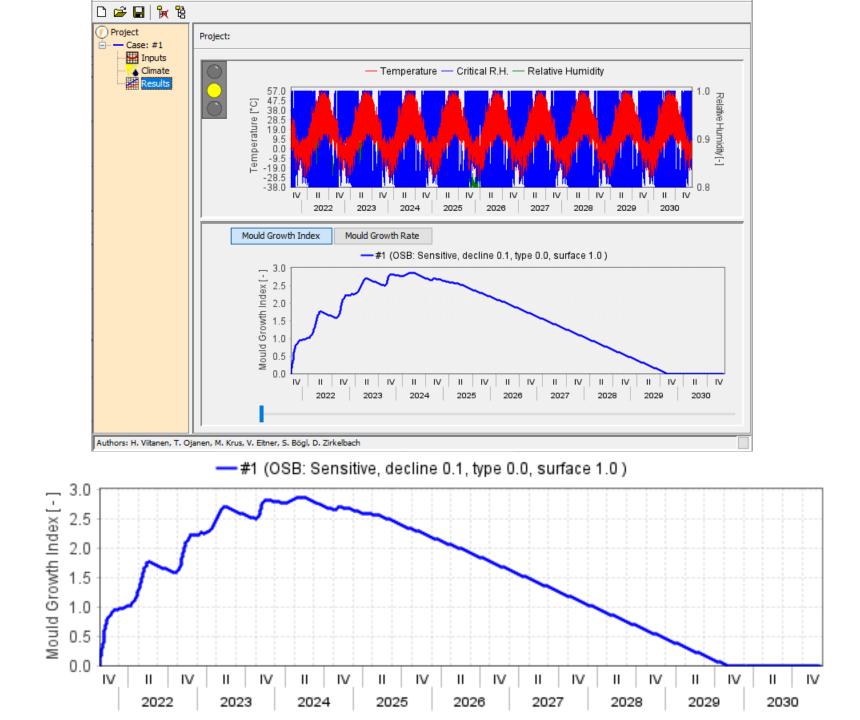

Minneapolis, MN

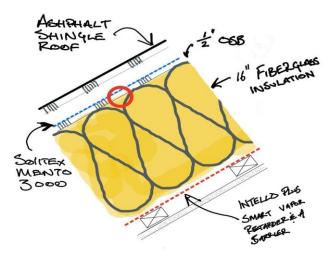
Climate Zone 6

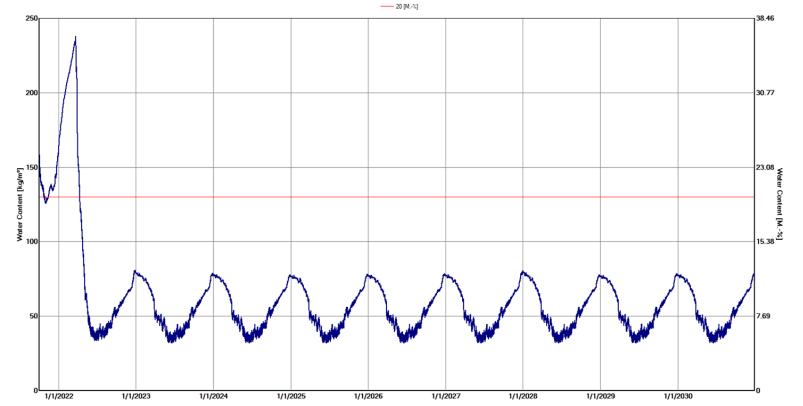
Follow ASHRAE 160 w/additional air leakage

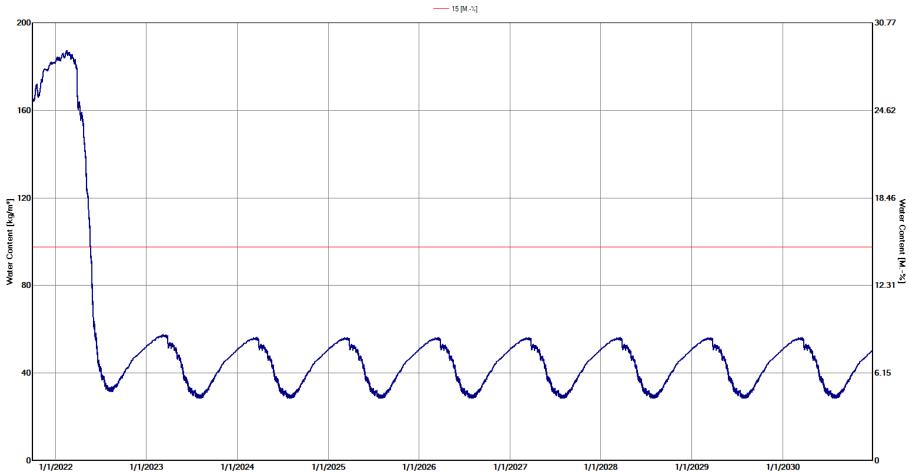

First Example - Asphalt Shingle Roof, ½" OSB, R31 Fiberglass (Not even code minimum!), PE airbarrier, Gypsum Board

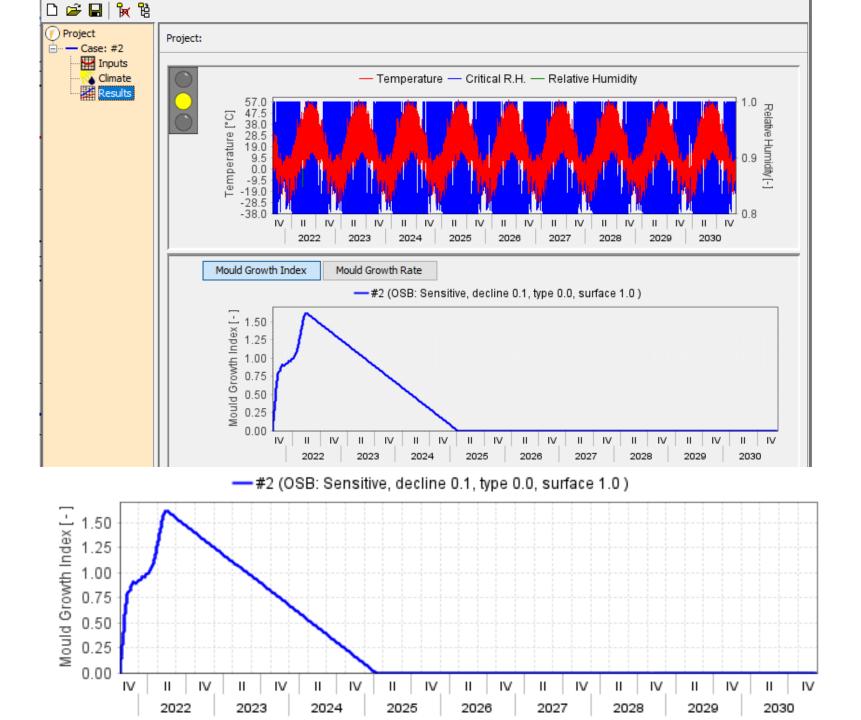

Second Example - Asphalt Shingle Roof, ½" OSB, 2" Vented Air Space, SOLITEX MENTO 3000, ½ OSB, R51 Fiberglass, INTELLO PLUS, Service Cavity, Gypsum Board


Build in construction moisture DRIES TO SLOW!






Oriented Strand Board



Oriented Strand Board

Oriented Strand Board

Minneapolis, MN

Climate Zone 6 - Passive House

Airtightness: 0.4ACH60

Foam free wall and roof

HERS index: 8

Wall R-50?

Corr metal rainscreen

hor battens

3 layer monolithic WRB

Cellulose

airtight sheathing - taped

2x4 wall w fiber insul

gypsum wall board

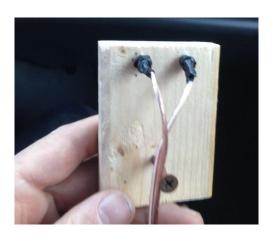
NO WUFI needed proven vented assembly

Can dry out easily

and in if needed (slowly)

WRB CONNECTION: LAP ROOFING WRB UP AND OVER PARAPET WALL AND CONNECT WITH EXTERIOR **Roof R-77** WALL WRB AIRTIGHT CONNECTION SANDWICH AIR BARRIER AND VAPOR RETARDER BETWEEN TOP PLATE AND TRUSSES FOR -flatroof (TPO) LATER ATTACHMENT TO FIELD SHEETS "H3" ANCHOR, EA. TRUSS -tapered foam SCHEDULED SERVICE CAVITY -¾" plywood sheathin AIRTIGHT CONNECTION ACOUSTICAL SEALANT HOT, LOW-SLOPE ROOF, R-67 -16" truss w Cellulose > EXTERIOR TPO MEMBRANE SYSTEM WEATHER RESISTANT BARRIER TAPER BOARD: MIN. 1/2" @ 1/4" PER 1'-0" SLOPE TO SCUPPERS 3/4" PLYWOOD ROOF DECK - Reinforced -18" OPEN WEB TRUSSES @ 24" O.C.: STRUCTURE WITH DENSE-PACK CELLULOSE INSULATION SCHEDULED AIR BARRIER AND SMART VAPOR RETARDER AIR BARRIER AND VAPOR RETARDER 2X FURR FRAMING (ROOM BY ROOM) @ 24" O.C. intelligent vapor retar SERVICE CAVITY 5/8" WALLBOARD > INTERIOR -2x4 service cavity Note: Final insulation value is R-77! The 67 is a typo on the detail drawing - gypsum wall board

Roof R-77 - airtight details:

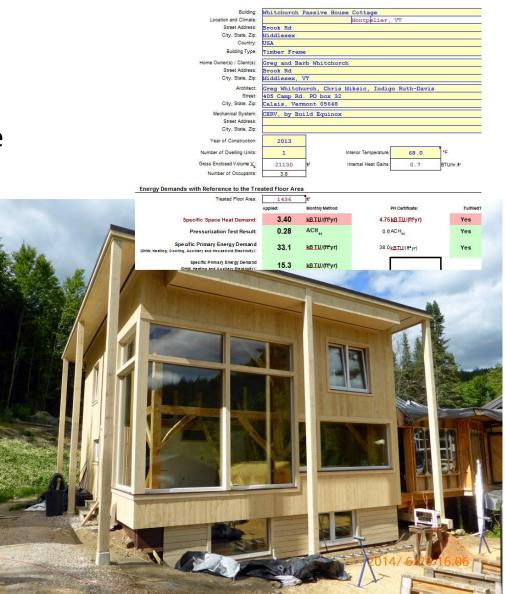


Moisture monitoring:

DATE	READING	OUT SIDE TEMP (C)	OUTSIDE REL HUM	INSIDE TEMP (C)	INSIDE REL HUM
12/13/2021	14.30%	-5	84.00%	22	39.00%
12/18/2021	14.2	-3	74	22	37
12/30/2021	14.7	-8	79	21	35
1/2/2022	14.1	-11	62	23	34
1/17/2022	15.8	-4	83	21	38
1/31/2022	15.8	-6	79	21	38

Upward trend in winter is ok, as long as it only happens in year 1,2

Stays below 18-20M% and summers below 15M%



Middlesex, VT

Climate Zone 6 - Passive House

Airtightness: 0.28ACH60

Timber frame with Foam free flatroof and walls

Walls - R50

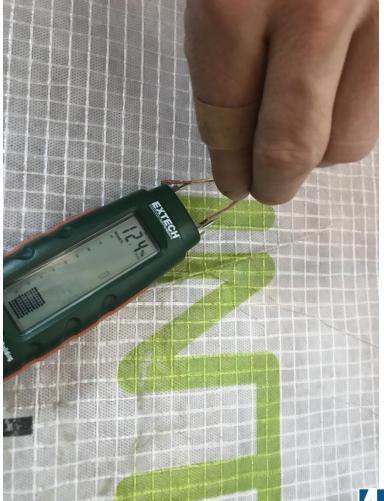
Vented rainscreen

16" I-joist

w cellulose behind MENTO PLUS

Paper based smart vapor retarder (reinforced)

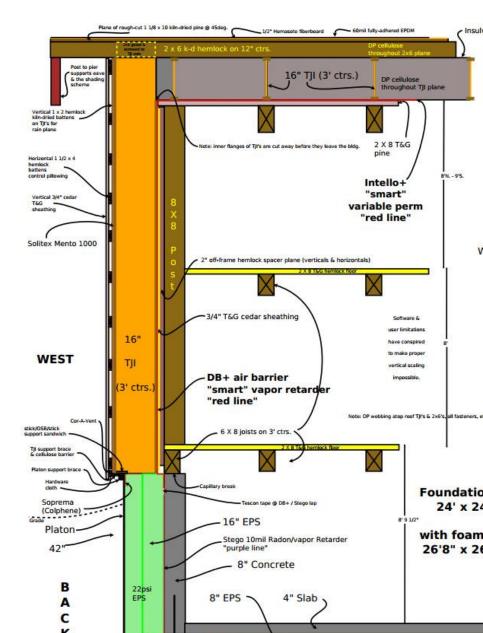
t&G sheathing (interior)


NO WUFI needed - proven vented assembly

Can dry out easily

and in if needed (slowly)

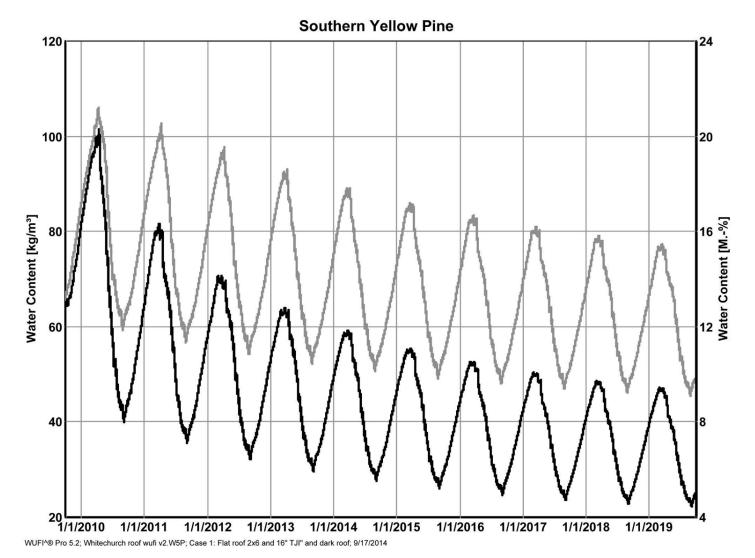
Unvented Flat Roof w/ cellulose


Monitored wall:

	A	AR	AS	AT	AU	AV	AX	AY	BA	BB
North wall	<u>Pix</u>	Walls:		Outer	Edge	(TJI brand microlam)	Walls:	pine block**	Walls:	(3/4" fir ply)
			outer		flanges		outer	DPC	window	bucks
13-16M%	Date // Location/ Parameter	North 2nd: Moisture %	South 2nd: Moisture %	South 2nd: Moisture %	North 1st: Moisture %	Bath 1st: Moisture %	North 1st: Moisture %	Bath 1st: Moisture %	North 1st: Moisture %	Bath 1st: Moisture %
	11/5/2013	?	?	?	?	?	?	?	?	?
	11/6/2013	?	х	?	?	?	?	?	?	?
	6/23/2014	?	12.4	?	16.5	11.2	11.8	13.3	16.2	18.3
	10/13/2014	?	11.8	?	16.7 bounce	16.8	13.0	13.5	14.8 bounce	14.8
	11/5/2014	?	12.1	?	17.6	17.3	13.5	14.2	14.2	15.7
South < 12.5%	12/5/2014	?	10.4	?	13.7	13.8	12.0	12.4	12.1	12.4
Journ < 12.570	12/26/2014	?	11.4	?	16.3	16.3	13.2	14.1	13.3	14.1
	1/16/2015	?	10.4	?	14.2	14.3	12.7	13.5	12.4	13.0
	1/31/2015	?	9.3	?	12.9	13.0	11.7	12.3	11.2	11.7
	2/17/2015	?	10.2	?	12.7	13.0	12.1	13.0	11.5	11.9
	3/5/2015	?	10.6	?	14.7	14.6	13.3	14.7	12.9	13.2
	3/17/2015	?	11.2	?	16.1	16.9	14.2	16.5	13.6	14.1
	4/3/2015	?	11.1	?	15.8	17.3	13.6	15.9	13.8	14.6
acceptable	4/16/2015	?	10.9	?	15.3	17.8	13.0	15.8	13.6	14.5
	6/8/2015	?	10.7	?	15.0	15.1	11.5	11.6	13.7	14.3
	8/23/2015	?	12.6	?	17.3	17.5	12.9	13.1	14.1	15.6
for wood	11/13/2015	?	10.8	?	16.2	15.6	13.1	13.1	13.1	13.8
TOF WOOD	12/17/2015	?	10.5	?	16.1	15.6	13.1	13.1	12.9	13.5
	2/4/2016	?	11.3	?	16.4	15.9	13.8	14.4	13.1	13.8
	4/7/2016	?	10.5	?	15.3	15.0	12.6	12.9	13.0	13.8
	7/18/2016	?	12.1	?	17.1	16.5	12.3	12.0	14.5	14.5
	12/14/2016	?	10.5	?	15.2	14.1	12.9	12.9	12.1	12.5
	1/6/2017	?	10.1	?	14.2	13.4	11.9	12.1	11.5	11.8
	1/15/2017	?	9.8	?	14.0	13.5	12.3	12.6	11.6	12.0
	4/4/2017	?	10.1	?	15.0	14.2	12.2	12.7	12.4	12.7
	4/25/2017	?	10.2	?	14.1	14.2	11.7	12.1	12.4	13.1
	7/16/2017	?	12.1	?	17.0	17.1	12.7	12.9	13.5	15.4
	4/27/2018	?	10.3	?	14.6	14.5	11.8	12.0	12.9	13.6
	10/24/2018	?	10.5	?	14.6	14.4	12.0	12.1	11.6	12.4
	5/10/2021		10.3		13.4	13.3	10.3	10.4	12.2	12.4
	12/11/2021		9.7		13.0	13.3	11.2	11.8	10.9	11.5

2013 - First foam free roof w PE sign off (code requirement)

- EPDM roof (black)
- White pine 1x's
- 16" I-joists filled w cellulose (3' o.c.)
- Intelligent/smart vapor retarder on
- 2x6 Hemlock interior

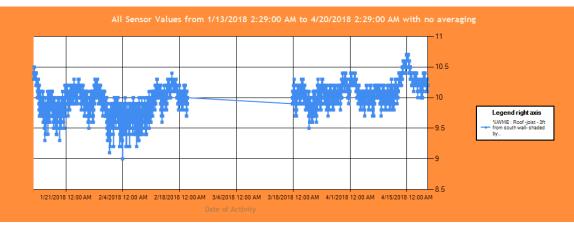


Dark vs light roof (in WUFI Pro):

10 Golden roofs for FOAM FREE FLATROOFS

Monitored results:

Below 10M% nice and dry!


A	J	К	L	Ν	0	Р
<u>Pix</u>	Middle	Layer		Roof:	Outer	
	eastern	hemlock			pine	deck
Date // Location/ Parameter	Ctr.: Moisture %	N.E.: Moisture VDC	N.E.: Moisture %	Ctr. Deck: Moisture %	Ctr.: Moisture %	N.E. Deck: Moisture %
11/5/2013	?	0.057	?	?	?	?
11/6/2013	?	?	?	?	?	?
6/23/2014	11.2	?	11.8	9.3	?	9.2
10/13/2014	9.4	?	9.0	8.4 (bounce)	?	9.2
11/5/2014	9.6	?	9.1	8.4	?	9.1
12/5/2014	8.5	?	8.0	7.5	?	8.0
12/26/2014	9.1	?	8.6	8.0	?	8.6
1/16/2015	8.4	?	8.0	7.9	?	8.1
1/31/2015	8.7	?	8.2	8.2	?	8.6
2/17/2015	9.0	?	8.2	8.3	?	9.0
3/5/2015	9.1	?	8.4	8.6	?	9.3
3/17/2015	9.2	?	9.0	9.0	?	10.0
4/3/2015	9.3	?	9.0	9.1	?	10.1
4/16/2015	10.0	?	9.6	12.6	?	10.6
6/8/2015	10.6	?	10.1	8.7	?	8.1
8/23/2015	10.6	?	9.3	9.2	?	8.5
11/13/2015	9.3	?	7.7	7.9	?	7.4
12/17/2015	9.2	?	8.0	8.1	?	7.4
2/4/2016	9.0	?	8.0	8.1	?	7.3
4/7/2016	9.9	?	8.6	9.2	?	7.9
7/18/2016	10.9	?	9.5	8.9	?	8.3
12/14/2016	8.4	?	7.6	7.7	?	7.3
1/6/2017	8.3	?	7.7	7.5	?	7.5
1/15/2017	7.9	?	7.7	7.7	?	7.5
4/4/2017	8.6	?	7.8	8.1	?	7.5
4/25/2017	9.5	?	8.3	9.1	?	7.7
7/16/2017	10.0	?	8.9	9.1	?	8.6
4/27/2018	9.4	?	8.4	8.6	?	7.8
10/24/2018	8.0	?	7.5	7.4	?	7.3
5/10/2021	9.0		8.3	8.4		8.0
12/11/2021	7.2		7.2	7.2		6.8

Moisture monitoring

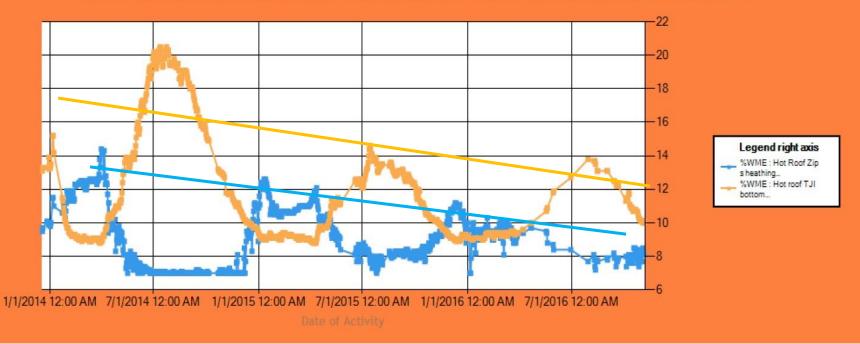
Omnisense

- Accurate remote temp, RH and M%
- Cell or WIFI gateways

Average Sensor Values from 1/13/2018 2:29:00 AM to 4/20/2018 2:29:00 AM using daily averages

Unvented Flat Roof #1

Area of Flat Roof


Naomi Beal Photography

Vapor closed Roof data...

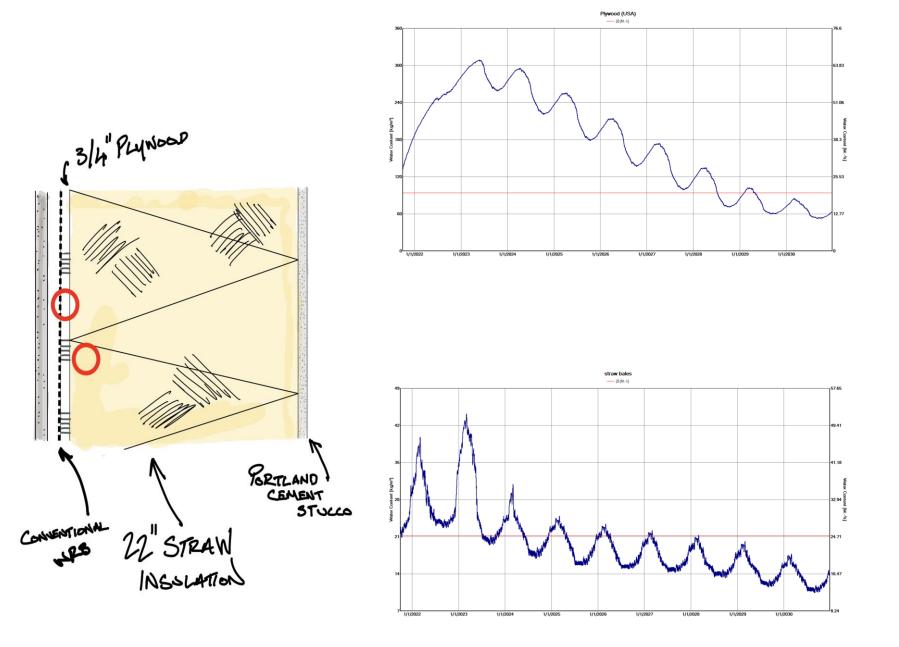
Average Sensor Values from 12/19/2013 7:51:00 AM to 1/19/2017 10:53:00 AM using daily averages

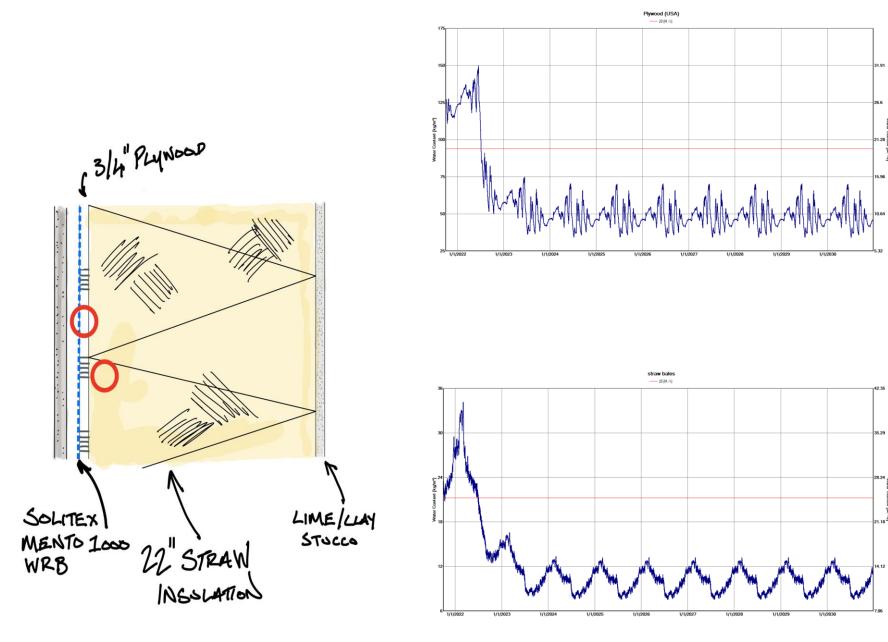
The trajectory is down and increased reserves. This is inline with WUFI Pro modelling Source:Ecocor.us

Straw Bale

Vapor closed materials meet hygroscopic materials

Boulder, CO


Climate Zone 5


Follow ASHRAE 160 w/additional air leakage

First Example - Portland cement stucco, 22" straw bale insulation @R2 per inch, ³/₄" plywood, Vapor closed WRB, Vented Cavity, Siding

Second Example - Clay stucco, 22" straw bale insulation @R2 per inch, ³/₄" plywood, SOLITEX MENTO 1000, Vented Cavity, Siding

Note - M% of straw should not surpass 25M% of mass as per Wihan, J. 2007. Humidity in straw bale walls and its effect on decomposition of straw. PhD thesis of University of East London School of Computing and Technology.

To Access Smart Enclosure Files, complete Download Form:

DOWNLOAD FORM

Our free e-books Project support WUFI modelling

How to put it all together

SUMMARY

Make it tight. Make it right.

• Make continuous control layers with properly placed high performance materials and readily get great airtightness and smart vapor control.

- Minimize (or eliminate) the use of plastic foams and make a more durable and sustainable assembly.
- Always blower door your buildings make them as tight as you can.
- Protect your control layers with sacrificial finishes.