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IMPROVE EFFICIENCY, ENHANCE DURABILITY, AND 
REDUCE RISK WITH CONTINUOUS EXTERIOR INSULATION

 Part 1:  Why    => It’s All About the Control Layers

 Part 2:  What => High-Performance Enclosure Systems

 Part 3:  How => Wall Case Studies

=> Using building science to guide us towards more 
robust, high-performance enclosure systems!
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OVERARCHING THEMES

 We must challenge ourselves to achieve higher-performing 
buildings and enclosures that are efficient, durable, healthy, 
robust, and resilient!

 Existing technology can get us there, but …
– We need to reduce the focus on finding the perfect product.
– We must embrace more robust approaches and systems.
– We need major improvements in design & execution.
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OPENING QUESTIONS

 Are we putting our “eggs in a fragile basket”?

 Are we being realistic about the process?
– Are we using risky designs, systems, and materials 

and hoping for perfect execution?
– Are we counting on perfect homeowner operation 

and maintenance?
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INTRO:  MAKING THE CASE FOR ROBUST

 What must we do to move away from fragile …
– Designs,
– Systems,
– Materials,
– Methods, and
– Operation?
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MAKING THE CASE FOR ROBUST

 Fragile
– Easily broken; not having a strong structure
– Unlikely to withstand severe stresses and strains

=> Things that make perfect sense on paper, 
but seem to be “too fragile” to handle the 
real life situations they encounter.



© 2022 Regents of the University of Minnesota. All rights reserved.

8

MAKING THE CASE FOR ROBUST

 Robust
– Strong, healthy, and hardy in constitution
– Built, constructed, or designed to be sturdy, durable, 

or hard-wearing
– A system that is able to recover from unexpected 

conditions during operation

=> Things that seem to work regardless what 
your subs, clients, or nature throws at them!
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MAKING THE CASE FOR ROBUST

 When push comes to shove; will your home’s response be 
fragile or robust?
– Execution errors
– Unusual operations
– Abnormal interior conditions
– Neglected maintenance
– Climate extremes
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MAKING THE CASE FOR ROBUST

 This demands a new approach. We must …
– design and engineer (not just build) our homes.
– build forgiveness/tolerance into all systems.
– build redundancy into critical elements and materials.
 or make it easy to repair and/or replace key components

– develop a more predictable delivery system.
– provide continuous feedback to the occupant.
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MAKING THE CASE FOR ROBUST

 Today we are going to focus on how to build high-
performance building enclosures that are more robust and 
resilient!

 All within the context of critical labor, materials, and supply 
chain issues! 
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A QUICK BUILDING SCIENCE REVIEW

 Remember -- it really boils down to three things!
– Heat Flow

– Air Flow

– Moisture Flow
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BUILDING SCIENCE CHEAT SHEET

 Heat always flows from hot to cold
 Moisture goes from more to less
 Cooling is wetting; heating is drying
 Airflow requires and path and a pressure
 Air can carry significant heat and moisture
 Vapor diffusion is a very slow process
 Bulk water and capillarity are powerful wetting mechanisms

– and will overwhelm highly insulated and airtight enclosures
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MOSITURE TRANSPORT: VAPOR

 Airflow vs. Diffusion
– Large or ongoing air flow in the 

wetting direction (from warm to 
cold) can be disastrous. 

– However, in the past wall 
airflow was also a significant 
drying mechanism.

– If air flow is restricted, the only 
drying mechanism is diffusion. Courtesy of Building 

Science Corporation
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MOISTURE CONTROL: GENERAL

 Over some critical period, drying must exceed wetting!
 Material storage provides a buffer between wetting & drying.

– Things get wet, so ample storage (buffer capacity) must be 
provided until drying can be completed.
 concrete/masonry walls provide a lot of storage
 steel frame and fiberglass provide almost no storage
 wood framing and sheathing provide limited storage

 In tight assemblies, almost all drying is by vapor diffusion!
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PART 1A. THE FOUR CONTROL LAYERS

 Every enclosure element must have four control layers!
– Thermal control
– Water control
– Air control
– Vapor control
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THERMAL CONTROL LAYER(S)

 General Overview 
– The intent is to slow the transmission of heat moving from 

warm to cold. 
 primary driver is the temperature difference across the enclosure
 flow rate will be determined by the overall U-value (or R-value) 

 In many ways, this is the easy one!
 how much? where? what type?
 minimizing major thermal breaks
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PATHWAY TO ZERO: METRICS

Enclosure
(R-values)

MN 
Code

ENERGY STAR DOE
ZERH

BCP
(PH)

NZE Now
(JL)*

Ceiling 49 50 50 50 60
Walls 20/21 25 25 30 40
Floors 30/38 30/38 30/38 40 --
Foundation 15(10) 15 15 15 20
Slabs
- Basement 0 0 0 10 10
- On-grade 10 10 10 15 20

*  From “BSI-081 Zeroing In” by Joseph Lstiburek
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PEN TEST: RED LINE FOR INSULATION
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WATER CONTROL LAYER(S)

 General Overview
– The intent is to keep water from reaching any moisture 

susceptible layers.
 primary drivers are gravity, wind, capillarity
 drivers can (and should) be mitigated

 This is absolutely critical,
– especially as we remove drying potential with increased 

insulation, reduced air flow, and multiple vapor retarders!
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WATER CONTROL LAYER(S)

 Sources of Bulk (Free) Water
– precipitation
– groundwater
– melting ice & snow
– condensation
– plumbing leak
– spills & overflows
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WATER CONTROL LAYER(S)

 Controlling bulk water is the single most important factor in 
the design and construction of durable and healthy 
buildings.

 The four Ds of water management
– design
– deflect
– drain
– dry
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WATER CONTROL LAYER(S) 

 Drain, drain, drain!!!
– use gravity to shed rain, surface, and ground water down and out

 What can’t be drained must have a robust back-up.
– secondary water management layer
– another method of water removal
– safe material storage

 What get’s stored must have a solid drying strategy.
– sufficient energy to evaporate & vapor open in the drying direction
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PEN TEST: BLUE LINE FOR WATER
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AIR CONTROL LAYER(S)

 General Overview
– The intent is to keep air from moving across the building 

enclosure carrying heat and moisture to locations that may 
create energy or moisture problems.
 primary driver is air pressures
 indoor air pressure can (and must) be managed
 eliminating/minimizing holes is the key to success

 This is absolutely essential in modern construction.
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AIR CONTROL LAYER(S)

 Framework for Airtightness
– Material  = 0.02 l/s-m2 @75Pa
– Assembly  =  0.20 l/s-m2 @75Pa
– Building  =  2.0 l/s-m2 @75Pa
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PATHWAY TO ZERO: METRICS

Enclosure
Airtightness

MN 
Code

ENERGY STAR DOE
ZERH

BCP
(PH)

NZE
(JL)*

ACH@50Pa 3.0 3.0 2.0 1.0 1.5

*  From “BSI-081 Zeroing In” by Joseph Lstiburek
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AIR CONTROL LAYER(S)

 There are many things that can serve as an air barrier.
– gasketed drywall, sealed poly or SVR, spray foam 
– taped sheathing, FAM & LAM, wrb/housewraps

 But where does it belong?
– inside => traditional location for cold climates
– outside => an ideal location in hot, humid climates
– can both sides work => sure
– how about in the middle => absolutely

 But remember, in the end it is all about continuity!
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PEN TEST: PURPLE LINE FOR AIR
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VAPOR CONTROL LAYER(S)

 General Overview
– The intent is to control vapor diffusion across a vapor pressure or 

thermal gradient.
 primary driver is the vapor pressure difference
 indoor vapor pressure can (and should) be managed
 flow rate will be determined by material permeability

 While it might not seem as critical, it can’t be ignored in …
 very cold climates
 hot humid climates
 high humidity environments
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VAPOR CONTROL LAYER(S)

 General Overview (continued)
– In general, as thermal insulation increases the vapor permeance

across the insulation must decrease.
– Today (due to air-conditioning) you must manage vapor from 

both directions.
– But remember -- almost all drying occurs by vapor diffusion.
– So if anything gets wet there must be a clear drying direction.
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VAPOR CONTROL LAYER(S)

 Framework for Material Permeability
– Class 1  =  < 0.1 perm impermeable
– Class 2  =  0.1 to 1.0 perm semi-impermeable
– Class 3  =  1.0 to 10 perm semi-permeable
– Class 4  =  > 10 perm permeable
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VAPOR CONTROL LAYER(S)

 In colder climates, the building code has required a Class 1 
or 2 vapor retarder for some time.
– 1 perm or less on the warm side in winter
– now there are exceptions with continuous exterior insulation

 The current codes don’t address exterior vapor retarders for 
summer conditions.
– but inward vapor pressure is real depending on cladding choices
– best practice would suggest you design for inward vapor protection



© 2022 Regents of the University of Minnesota. All rights reserved.

34

VAPOR CONTROL LAYER(S)

 1 perm (Class 2) is an interesting, but not lonely number!
– ½” OSB (dry cup)
– smart vapor retarder (dry cup)
– 1” extruded polystyrene
– kraft-faced paper
– several coats of oil-based paint
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VAPOR CONTROL LAYER(S)

 0.1 perm can be a tricky number!
– Generally this is lower than needed to prevent wetting and it will 

significantly shut down drying.
– However, it can be safe, if it is used in the right location.
– In the end, a Class 1 vapor retarder surface must be warm 

enough to prevent condensation in both summer and winter.
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VAPOR CONTROL LAYER(S)

 Vapor control is more of a strategy than a specific layer.  
 However, there are a couple of questions that can guide 

the enclosure design.
– Does the assembly have a hard condensing plane that may be 

cold enough to induce condensation in winter or summer?
– Is there a sufficient vapor throttle to prevent vapor wetting of 

moisture susceptible materials from inside out and/or outside in?
– Is there a clear drying direction along with sufficient energy to dry 

out any moisture susceptible materials?
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THE MODERN ENCLOSURE CONUNDRUM 

 We spent several decades focused on energy efficiency 
without concurrent attention to moisture management! 
 Initially we focused on management of condensation due 

to vapor diffusion.
 Later it was recognized that air leakage was a far bigger 

moisture risk and we began to address air barriers.  
 Then it became painfully apparent that we weren’t paying 

sufficient attention to the management of bulk water.
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THE MODERN ENCLOSURE CONUNDRUM 

 However, only recently has the conversation turned to the 
importance of maintaining a drying potential 
– We recognize that things can get wet at some point due to 

imperfect design, execution, or operation.
– Therefore, all moisture susceptible materials must be able to dry 

out primarily by vapor diffusion
 that can be outward in winter; inward in summer,
 except below grade, which can only dry inward.
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SO LET’S REVIEW HOW WE GOT HERE!

 Where were we?

 Where are we?

 Where do we need to go?
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Wall A: Older, Uninsulated Frame Wall
 Energy performance is very poor 

– especially in cold and hot climates
 Moisture is managed by substantial heat and 

air flows
– wetting potential is high, but so is the drying potential

 Poor comfort due to drafts and cold/hot interior 
surface temperatures

 It may be durable, but it is unacceptably 
inefficient and uncomfortable!

Energy ComfortDrying PotentialWetting Potential
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Wall B:  Older, Insulated Frame Wall
 Improved thermal efficiency
 Wetting potential goes up due to possible 

condensation; water intrusion potential remains
 Drying potential is reduced as a result of less 

heat transfer and less permeable layers/linings
 Improved surface temperature, but may still be 

drafty
 More efficient and comfortable, but not as 

durable or robust!

ComfortDrying PotentialEnergy Wetting Potential
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Wall C: Typical Frame Wall 
 Improved thermal and air control for higher 

energy efficiency
 With excellent craftsmanship all wetting 

mechanisms can be reduced
 However, drying potential is extremely limited

– a bulk water leak or localized condensation could 
be disastrous

 High level of occupant comfort
 Very efficient and comfortable, but 

potentially risky and not very robust!
Energy Wetting Potential ComfortDrying Potential
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Wall D: “Perfect Wall” w/ CEI 
 Improved thermal and air control for higher 

energy efficiency
 All moisture transport mechanisms can be easily 

addressed to reduce the wetting potential
 Excellent ability to dry in both directions
 High level of occupant comfort
 Works in all climates (R-values can be adjusted to suit)

 Flexible framing, electrical, and interior finishes
 Very durable, efficient, comfortable, and 

robust!
Energy Drying PotentialWetting Potential Comfort
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Wall E: Hybrid Wall w/ CEI 
 Outstanding energy performance
 All moisture transport mechanisms can be 

easily addressed to reduce the wetting potential
 Maintains ability to dry in both directions
 Very high level of occupant comfort
 Works for all climate zones 

– R-values and ratios can be adjusted to fit
 Flexible framing, electrical, and interior finishes
 Extremely efficient, comfortable, durable 

and robust!
Energy Drying Potential ComfortWetting Potential
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TIME FOR A QUICK PAUSE

 Questions

 Thoughts

 Reflections

 Discussion
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PART 2A. DEVELOPING A FORGIVING ENCLOSURE

 The building enclosure is the separator between the 
indoor and outdoor environments.

 In an enclosure system, as the energy flow goes down 
the moisture risk goes up! 
– Less energy means colder materials and surfaces
– Colder means higher RH and increases wetting potential
– If something gets wet, it takes significant energy and a drying 

potential to remove the moisture.
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DEVELOPING A FORGIVING ENCLOSURE

 The “Perfect” Strategy for:
– Walls
– Roof
– Slab
– Foundation

 Move the structure to the inside and the control 
layers to the outside …
– It simply works and works everywhere!!!
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DEVELOPING A FORGIVING ENCLOSURE

 While the name may change, the concept stays the same!  
– Perfect Wall (Joe Lstiburek w/ credit to Canadians)
– PERSIST (Canadians)
– REMOTE (Alaskans)
– PERFORM (Texans)
– Out-sulation (industry)
– Exterior Thermal & Moisture Management System (CCH)
– Continuous Exterior Insulation (industry & codes)
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THE PERFECT WALL (FROM BSC)

* BSI-001: The Perfect Wall
Joseph Lstiburek
Building Science Corporation
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WORKS FOR ROOF & SLAB, TOO!
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PERFECT CONNECTIONS
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PUTTING THE LAYERS TOGETHER

 Back to the Control Layers 
– Thermal
– Water
– Air
– Vapor

 What you use is important, but the where, how, and when 
(order/sequence) is critical. 
– However, it can be extremely simple! 
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THE PERFECT INSTITUTIONAL WALL

Courtesy of Building 
Science Corporation



© 2022 Regents of the University of Minnesota. All rights reserved.

54

THE PERFECT COMMERCIAL WALL

Courtesy of Building 
Science Corporation
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THE PERFECT RESIDENTIAL WALL

Courtesy of Building 
Science Corporation
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4 IN 1 CONTROL LAYER
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HOW MUCH EXTERIOR INSULATION?

High Performance Enclosures:
John Straube, 2012
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CONDENSATION POTENTIAL

High Performance Enclosures:
John Straube, 2012
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% OF EXTERIOR INSULATION

High Performance Enclosures: John Straube, 2012
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PART 2B.  ROBUST BUILDING ENCLOSURES

 Continuous exterior insulation improves efficiency, 
enhances durability, adds robustness, and reduces risk! 
– Below grade slabs and walls are a top priority due to increased 

wetting potential and limited drying potential to the exterior
– Above grade walls are the next priority due to bulk water 

concerns and dual (winter & summer) vapor wetting potential
– For flat or slope roof/ceiling configurations it should be given 

heavy consideration 
 However, it is less important on traditional roofs due to better water 

management and forgiveness provided by attic venting.
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FOUNDATION MOISTURE CHALLENGES

 Foundations get wet from four sides by all four moisture 
transport mechanisms.
– bulk water, capillarity, diffusion, and air flow

 Foundations must dry primarily to the inside.
– generally by vapor diffusion only

 So you must keep it dry from all four sides
– or come up with an approach that promotes inward drying better 

than outward wetting.
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CONTROL LAYERS – PERFECT SLAB

 Dry and Warm Slab w/ RRNC
– 4” of ¾” and up aggregate; no fines
– 1 to 3” of extruded polystyrene
– Poly vapor retarder (optional)
– 4” high quality slab; all joints and edges sealed
– Sealed sump basket
– 3 or 4” passive vent from below slab to the roof
 with electrical box nearby in attic for fan activation
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CONTROL LAYERS – FOUNDATION

 Dry and Warm Foundation
– Cast-in-place (or CMU or wood) foundation
 capillary break between footing and wall

– Quality exterior waterproofing
– Exterior drain tile protected by rock & fabric
– R-15 exterior insulation
 extruded polystyrene or semi-rigid fiberglass

– Good vertical drainage 
 with 6” impermeable cap
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FOUNDATION SLAB & WALL SOLUTION

Source:  Oak Ridge
National Laboratory
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CONTROL LAYERS – ENHANCED ROOF

 Traditional Vented Attic
– Ceiling drywall direct to trusses (no poly)
– One pass closed-cell spray foam
 sealed to the top plate, heel sheathing, and chutes
 approximately 2” (R-12)

– Blown-in insulation (R-40 to 50)
 fiberglass @ 16” to 18”
 cellulose @ 12” to 15” 
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CONTROL LAYERS – HYBRID ROOF

 For Sloped Roof or Conditioned Attic
– Interior batt (R-21) between rafters or top chords
– Structural sheathing
– Peel and stick membrane 
– Exterior foam (R-30 - usually XPS or polyiso)
– Flat 2x4 furring strips fastened through to frame
 provides vent space w/ continuous soffit & ridge vents

– OSB roof deck
– Building paper and shingles
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CONTROL LAYERS – FENESTRATION

 Windows Designed for Integration
– Always use the highest quality, low U-value, warm-edge window 

you can afford that comes with …
 a custom fit sill pan,
 head flashing with end dams, and 
 flanges that are air/water tight with tabs to integrate with flashing and 

air/water control layer
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CONTROL LAYERS – DUCTWORK 

 What if the ductwork breaks through the air control and 
vapor control layer?
– The duct must be absolutely air and vapor tight with proper 

insulation and impermeable covering.
– Or you must reconfigure the control layers so the air and vapor 

control layers are outside of the ductwork and inside the 
dewpoint(s).
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TIME FOR A QUICK PAUSE

 Questions

 Thoughts

 Reflections

 Discussion
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3. WALL CASE STUDIES

 Desired Outcomes
– comfortable 
– efficient
– durable
– healthy
– resilient

=> Important Note:  These are just three examples built 
upon the perfect wall and control layer methodology!  

 Desired Characteristics
– accessible
– easy to execute
– cost effective
– easy to maintain/repair
– robust
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WALL A: EXTENDED PLATE WALL (EPW)

 EPW was developed by Home Innovation Research Labs
– Driven by demand for improved energy efficiency
 stricter code requirements
 increasing consumer expectations

– Lack of market penetration for “high-R” walls
 low market adoption for exterior continuous insulation
 cost, complexity, and lack of industry-wide training

– Need for a durable and robust high-performance wall that is 
flexible for both site-built and panelization
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EXTENDED PLATE WALL: SOLUTION

High-R wall with rigid foam insulation interior to the wood structural sheathing

Interior View Exterior View
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EPW: KEY CHARACTERISTICS

 The bottom and top plates are one 
dimension larger than the studs.  

 There is a layer of 2” rigid insulation in the 
space between the stud framing and OSB 
sheathing. 

 Double rim board (beam) functions as a 
header, and can be inset 1” to provide space 
for a continuous insulation thermal break.
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EPW: CONTROL LAYERS

 Water Control Layer 
– WRB, shingle-applied, fastened to OSB sheathing or
– Treated OSB sheathing (liquid-applied or taped seams)

 Air Control Layer 
– Sealed rigid foam or
– WRB or taped sheathing 

 Thermal Control Layers
– Continuous rigid foam insulation
– Cavity-fill insulation
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EPW: CONTROL LAYERS

 Vapor Control Strategies
– Sealed rigid foam provides a distinct, centrally-located vapor 

control plane with effective drying to the direction from which 
the source moisture originated.

– Interior vapor retarder recommended in very cold climates 
and buildings with high indoor humidity
 preferably a kraft-facer or “smart” vapor retarder.
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EPW: ADVANTAGES

 Uses standard framing and air 
sealing techniques
– standard nails in a common fastening 

schedule (3-1/2” @ 3” edge / 6” field)
 Exterior OSB allows conventional 

methods for
– drainage plane treatment
– window installation
– cladding attachment

2x4 
header

OSB 
sheathing

WRB

2x4 
framing

2” Rigid
Foam
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EPW: SUMMARY

 Suitable for use in all climate zones
 Flexible configurations to provide above-code performance
 95% of the wall area is free of thermal bridging
 Can be panelized for packaged delivery to the site
 Estimated cost is less than

comparable code wall with
continuous exterior insulation



© 2022 Regents of the University of Minnesota. All rights reserved.

78

WALL B: OPTI-MN (HYBRID) WALL



University of Minnesota’s

Team OptiMN
Won the Grand Prize
In DOE’s 2015 “Race to Zero” 
Student Design Competition
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2015 DOE Race to ZERO Student Design Competition | University of Minnesota

INTRODUCING | The Impact Home
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PERFORMANCE GOALS | Site in DOE Climate Zone 6

Energy Efficient | Zero Energy Ready Water Stewardship

Indoor Air Quality Fortified HomeDurable & Long-Lasting
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CONSTRUCTABILITY

Approachable and Appropriate       
Construction Materials and Methods

 Simplified design and shape
 Based on traditional construction 

materials and techniques
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ENCLOSURE DESIGN | 4 Control Layers

 Thermal insulation to retard 
heat flow

 Water control membrane to 
prevent wetting of moisture 
sensitive materials

 Air barrier to stop unwanted 
heat and moisture flow

 Vapor retarder strategy to 
slow wetting, yet allow drying

 Orange: W.R. Grace Perm-a-Barrier 
 Red: Huber ZIP sheathing system
 Blue: Foundation waterproofing
 Purple: Cross-laminated polyethylene 

membrane
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FOUNDATION STRATEGY | Airtight, Dry, & Warm

 Exterior waterproofing and 
insulation
 Slab is R-10
 Footing is R-10
 Foundation wall is R-15

 Good drainage
 Capillary breaks
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HYBRID WALL STRATEGY | Robust & Easy to Construct

 The air, water, and vapor 
control layer is over a 
traditional wood-frame wall

 Then rigid insulation, vented 
rainscreen, and siding is 
added to the exterior

 This approach limits moisture 
movement, yet facilitates bi-
directional drying



INTRO | GOALS | DESIGN | ENCLOSURE | SYSTEMS | PERFORMANCE & FINANCIAL | CONCLUSION
2015 DOE Race to ZERO Student Design Competition | University of Minnesota

HYBRID ROOF STRATEGY | Adds Flexible Space & Robust

 Provides additional space for design, 
living, storage, and mechanicals

 Manages moisture and mitigates ice 
dams much better than traditional 
sloped ceilings
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PERFORMANCE

Heating, cooling, and water heating costs is 
approximately $420 / year
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OPTI-MN (HYBRID): CONTROL LAYERS

 Water Control 
– Drainage behind cladding
– “Peel & stick” membrane on sheathing

 Air Control
– “Peel & stick” membrane on sheathing

 Vapor Control
– “Peel & stick” membrane on sheathing

 Thermal Control
– R-15 fiberglass in cavity
– R-15 extruded polystyrene on exterior
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OPTI-MN (HYBRID): SUMMARY

 Pros
– Simple and familiar framing
– No interior air sealing required; can glue drywall
– High R-value; superior airtightness 
– Strong drying potential both inside & out

 Cons
– Cost of exterior control layers
– Exterior furring strips must hit the framing
– Window trim???
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WALL C: SOLID PANEL STRUCUTRAL SYSTEM

 2016 DOE Building America funded 
project to validate: 
– a new enclosure technology 
– delivered by a single enclosure contractor

 Demonstrate market acceptance with 
focus on affordable housing
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SPS SYSTEM: MARKET DRIVERS

 Reduce the cost of the “Perfect Wall”
 Drive down the cost of the structure

– Requiring less labor and skill
 Simplify the application of the 

exterior control layers
 Protect critical control layers
 Speed enclosure time (esp. dry-in)
 Stronger with enhanced resilience
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SPS: BENEFIT OF SINGLE ENCLOSURE CONTRACTOR

 Building process developed by MonoPath
– reduces installation errors
– speeds overall construction time
– reduces overall construction cost 

 More consistent performance outcomes
– reliable insulation quality and performance
– improved moisture management 
– remarkable and repeatable airtightness
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SPS SYSTEM: CONTROL LAYERS

 Water Control 
– Drainage behind cladding
– “Peel & stick” membrane on wall panel

 Air Control
– “Peel & stick” membrane on wall panel

 Vapor Control
– “Peel & stick” membrane on wall panel

 Thermal Control
– R-20 extruded polystyrene on exterior
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SPS SYSTEM: SUMMARY

 Pros
– Quick erection to dried-in & secured 
– Can reduce labor time and skill 
– Extremely robust performance
– Potential strength advantages???

 Cons
– Some design limitations until system is validated
– Upfront engineering costs 
 DOE BA has funded a current project to address this issue!
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FINAL NOTES & THOUGHTS

 High-performance houses will require new enclosure 
strategies and systems
– Achieve higher insulation levels
– Improve water, air, and vapor control layers
– Employ better drying strategies
– Embrace more robust delivery systems
– Provide enhanced resilience
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FINAL NOTES & THOUGHTS

 High-performance enclosures will demand:
– Integrated systems approach to low-load HVAC+DHW
– Increased attention to indoor air quality
 source control
 ventilation
 distribution

– Improved make-up air solutions for
 range hood
 clothes dryer
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RESOURCES FOR H-P WALLS

 DOE Building America Resources
– General Energy Information (EERE)
– DOE Zero Energy Ready Home (ZERH)
 Tour of Zero

– Top Innovations “Hall of Fame”
– Building America Solution Center
– Building Science Advisor
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World-Class
Research…

…At Your
Fingertips

Building America Solution Center

BASC.energy.gov
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Quick Tour: Guides

119 | INNOVATION & 
INTEGRATION: Transforming the 
Energy Efficiency Market

Buildings.Energy.gov

Scope: Clearly defines and bounds the topic in a way builders
and remodelers can contractually obligate their subcontractors.
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ORNL Building Science Advisor: Input Screen

Improvements:
• Number of input 

screens reduced;
• More obvious “Help” 

menu;
• More “drop down” 

menu selections;
• “Results” button 

requires complete input 
selection;

• More thickness 
variations in the 
continuous  insulation 
menu; and

• Better image graphics.
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ORNL Building Science Advisor: Results Screen

• Durability indicator/dial
• R-value comparison with Code
• “Drop down” menu capability
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BACKGROUND ARTICLES FOR H-P WALLS

 BSI-028: Energy Flow Across the Enclosure
– Joseph Lstiburek, 2009

 BSI-039: The Five Things
– Joseph Lstiburek, 2010

 BSI-001: The Perfect Wall
– Joe Lstiburek, 2010 (revised)

 BSI-090: Joseph Haydn Does the Perfect Wall
– Joe Lstiburek, 2015

Available at buildingscience.com
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REFERENCE MATERIALS FOR H-P WALLS

 Building Science for Building Enclosures
– John Straube & Eric Burnett (2005)

 High-Performance Enclosures
– John Straube (2012)

 Builder’s Guide to Continuous Insulation
– Peter Baker & Joseph Lstiburek (2014)

 Moisture Control Guidance for Buildings
– U.S. EPA (2013)
– epa.gov/sites/default/files/2014-08/documents/moisture-control.pdf

https://www.epa.gov/sites/default/files/2014-08/documents/moisture-control.pdf
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BUILDING AMERICA RESOURCES FOR H-P WALLS

 Getting Enclosures Right in ZERH
– https://www.energy.gov/eere/buildings/downloads/zerh-webinar-getting-

enclosures-right-zero-energy-ready-homes
 Building America Measure Guideline

– https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/i
ncorporating-thick-layers-exterior-insulation.pdf

 Building America Solution Center
– https://basc.pnnl.gov/resource-guides/continuous-rigid-insulation-

sheathingsiding
– https://basc.pnnl.gov/code-compliance/continuous-insulation-

claddingfurring-attachment-code-compliance-brief

https://www.energy.gov/eere/buildings/downloads/zerh-webinar-getting-enclosures-right-zero-energy-ready-homes
https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/incorporating-thick-layers-exterior-insulation.pdf
https://basc.pnnl.gov/code-compliance/continuous-insulation-%E2%80%93-claddingfurring-attachment-code-compliance-brief
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TIME FOR A QUICK PAUSE

 Questions

 Thoughts

 Reflections

 Discussion
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