Special Offer! Become an EEBA Member for FREE!

With Code: EEBAPartner

Learn more & redeem offer on our website: www.eeba.org/membership

EEBA's Sponsors

The EEBA High Performance Builder Certification

- The Houses That Work Building Science workshop
- The HERS Associate Course
- The High Performance Mechanical Systems course

Welcome to:

Applied Building Science

8

What's in your toolbox? Powerful information at your fingertips.

App for FREE

More than 80,000 building professionals use the Ci app

Our 80,000+ followers are overwhelmingly building professionals. We are the #1 app in the building industry with 42% of our users engaging between 3-30 minutes per session. The CI app provides education and building science lessons for the construction industry. Contractors and builders need a quick and easy way to access information about your building products WHILE on the Go.

13% Mundecturr 13% Cri Audience 16% Mchateck, Enginer, Secher 16% Mchateck, Enginer, Secher 16% Mchateck, Enginer, Secher 10% Mchateck, Enginer, Mchateck, M

Contact: info@ConstructionInstruction.com | 719.375.9300

Andrew Oding Vice President | Director of Building Science

- Member, NBC SCEEHB Standing Committee Energy Efficiency in Houses & Buildings 2019 - present
- Chair, NBC Task Group "Unintended Consequences " SCEEHB Standing Committee Energy Efficiency in Houses & Buildings 2019 – present
- Voting Member, ASHRAE 90.2 EE Standard for low Rise Buildings and homes
- Member, CSA TC424 Energy systems in buildings
- CACEA Canadian Association of Consulting Energy Advisors, BOD
- Chair-Past, CHBA Technical Research Committee
- Chair-Past, CHBA Net Zero Council
- Chair-Past, NRCan Energy Star for New homes TAC
- Chair-Past, CaGBC LEED for Homes TAC

Who's here and What would you like to talk about??

Module One

- Compelling Industry trends
- The Essential High Performance elements in a home
- Basic building science to effectively manage the flow of **Heat, Air and Moisture** in buildings

What is our goal?

"Create an enclosure that separates the indoors from the outdoors...and is safe and healthy for the people inside."

In addition to:

Creating a high performance home that is; energy efficient, durable, healthy, aesthetically pleasing, respectful to the environment and profitable...

in short, HOUSES THAT WORK

House Systems

What's Changed in homes in the last 35 years? What impacts does that have?

What's the decision tree?

- Decisions made on price(First Cost vs TOTAL Cost)
- Decisions made on warranty/service issues
- Customers satisfaction/expectations
- Process/cycle times
- Supplier availability

We are here to help reinforce your decision process

Codes Have Changed

Residential Code Adoption as of March 2020

There are Programs to Help

Passive House Institute US

ENERGY STAR

Codes respecting the science

Codes will be more Performance Objectives

Climates	2015 IECC HERS Index Scores
Zone 1 — 2	52
Zone 3	51
Zone 4	54
Zone 5	55
Zone 6	54
Zone 7 — 8	53

What's Changing quicker.... Codes or expectations of consumers?

- Comfort
- Quiet
- Lifestyle
- Investment quality
- Demographics
- Access to information
- Warranty

Defining High Performance Homes....

Tighter Construction

Improved Insulation Systems

Improved Insulation Systems

Improved Durability

High Performance Windows

Efficient Heating and Cooling Equipment

Effective Distribution

Efficient Water Heating

Ventilation & IAQ Systems

Lighting-Energy Efficiency

Efficient Appliances

Water Efficiency

Smart Technology

Zones Bedroom
Hotor 48° 68° 205 35°
Coel Setpoint 73° v 73° v
Hold Until 12:00 AM
Switch to Permanent Hold
Cancel Hold Submit
Hanne System

Sustainable Materials

Site planning

Renewable Energy & Storage Systems

A Complicated Business

- Extensive collection of materials
- Uncontrolled building conditions
- Communication challenges
- Workforce training
- Changing codes
- Elevated consumer expectations

discussing a high performance heating system installation in field

Let's Proceed with Some Science

IECC 2015....

SMALLER TOTAL CIRCLE... LOAD PROFILE HAS CHANGED

Energy use in homes - Cold Climate

Typical cold climate home

- This is energy used the costs of energy will vary
- What would you do first?
- Is usage going up or down?

Where we live affects performance.

Minneapolis, MN - design conditions

48

Condition	ASHRAE 99% / 1%
Winter, design dry bulb (F)	-15°F
Summer, design dry bulb (F)	91°F
Summer, design wet bulb (F)	71.6°F
Degree days-heating	7981
Degree days-cooling	682
Precipitation	28"
Solar incidence - South, July	90

Our investment in the structure is significant

We often under invest in managing moisture

The resulting damage can be extensive

What defines durability?

- Materials & Products
 - Are they installed properly?
 - Are they compatible with surrounding materials?
 - Are they replaceable?
- Will they be affected by:
 - Water
 - Heat
 - Radiation
 - Insects

Insects & Rodents

Each climate zone has insects that affect the building and their clients. Understanding their needs is the best deterrent.

The Building Industry is Changing

"You must learn from the mistakes of others. You can't possibly live long enough to make them all yourself."

Sam Levenson

Humorist Sam Levenson, 1911-1980.

THE BUILDING SCIENCE TIPPING POINT

ADVANCED ENCLOSURES

- More air tight
- Higher insulation levels
- Complete insulation systems
- -Adv. Window

COMFORT RISKS WETTING RISKS INDOOR AIR QUALITY RISKS

> "Building Science Tipping Point Analogy" Courtesy of Sam Rashkin U.S DOE

Operational vs Embodied Carbon:

Unintended Consequences?....

innovative learning, building & living

Chris Magwood, MAsc

http://endeavourcentre.org/

The Trouble With <u>Embodied</u> Carbon....

- Passive Homes/ Net Zero Energy homes, may need to operate for 400+ years to offset embodied energy
- Organic Cotton bag may need to be used 20,000
 times to be an improvement over a plastic, single
 use bag
- Stainless steel water bottles embodied carbon is
 14x greater than single use plastic bottle

Take a Strategic Approach

Apply the science to the building enclosure

What rules must be followed?

Building Science Fundamentals

- Heat
- Air
- Moisture

The Physics of Buildings

- Moisture moves from more to less
- Moisture moves from warm to cold
- Heat flows from warm to cold
- CFM (air) out equals CFM (air) in
- Heat, air & moisture are one
- Drain the rain
- Things always get wet let them dry
- All the action happens at the surface

Great Reads !

BUILDING SCIENCE FOR BUILDING ENCLOSURES: John Straube – Eric Burnett

WATER IN BUILDINGS: William Ross

Council Galacter Gorgel Televisi Council Galacter and at the Colors

Builder's Guide Cold

Climates

Building Science for a Cold Climate: (The ORIGINAL) Canada NRC – Hutcheon & Handegorde

Builders Guide to Cold Climates: Joe Lstiburek-Building Science Corp

Building Science: The study of what goes wrong

Main damage functions of an enclosure, in order of magnitude:

1. Water

2. Heat

3. UV

WATER STAINS

LOOSE CLADDING

CROOKED OR FALLING DEBRIS

CRACKING OR EFFLORESCENCE SPALLING

Building Science and Technical challenges

Rate of Thermal Flow:

A well-insulated and air-sealed home, with good windows and doors, reduces the amount of energy needed to keep the home comfortable.

...Beware; The good old "Thermal Flow" also historically dried out walls, made windows and doors last longer and sometime even provided ventilation!

Good science = Sustainable homes

Physics dictates performance

The objective is:

 \circ Healthy

 \circ Safe

 \circ Durable

 \circ Efficient

 \circ Affordable

 \circ Sustainable

Let's start with Heat Flow

Heat Transfer by Conduction Primary mechanism through walls, floors, attics

Conduction Heat Loss/Gain

Heat flow = Exposed Area × Temp. Difference R-Value Example: With R-30 insulation in the attic

Heat Loss through 1000 sq. ft of ceiling, 70 F inside, 10 F outside

=1000 × (70 - 10) / 30 = 2,000 BTUs/hr

Conduction Heat Loss/Gain

Heat flow = Exposed Area × Temp. Difference R-Value Example: With R-30 insulation in the attic

Heat gain through 1000 sq. ft of ceiling, 135 F in the attic, 75 F in the house

=1000 × (135 - 75) / 30 = 2,000 BTUs/hr

=1000 × (135 - 75) / 60 = 1,000 BTUs/hr

Thermal bridges

Thermal Bridging- Problem

Heat flows more easily through wood studs = Conduction

2" x 4" stud = R-3.5 Insulation cavity = R-13+

What about...double, triple studs, rim joists, headers and partition wall intersections?

Thermal Bridging - Stud Loss

- Without insulated sheathing, a quarter of your walls are not insulated!
- On a square house, it's the equivalent of one whole wall!

surface Area

Effective R-value of 2 x 4 wall- no windows or doors

23% framing-no	R-Value		
windows	Cavity	Studs	
Outside air film	0.17	0.17	
1⁄2" OSB	0.62	0.62	
2 x 4 stud-wood	n/a	3.71	
cavity insulation*	13	n/a	
¹⁄₂" gypsum	0.45	0.45	
Interior air film	0.68	0.68	
Totals	14.92	5.63	
Total wall	9	.92	

* denotes "perfect" insulation installation

Remember this number

EEBA

There are 3 ways to reduce conduction flow

Add continuous insulation

- reduce framing

Effective R-value of 2 x 6 wall- no windows or doors

23% framing-no	R-Value	R-Value	
windows	Cavity	Studs	
Outside air film	0.17	0.17	
¹ / ₂ " OSB	0.62	0.62	
2 x 6 stud-wood	n/a	5.83	
cavity insulation*	21	n/a	
¹ ⁄₂" gypsum	0.45	0.45	
Interior air film	0.68	0.68	
Totals	22.92	7.75	
Total wall		15.26	

* denotes "perfect" insulation installation

Remember this number

2 x 6 Wall Total Effective R-Value with HD Foam

Framing Percentage	R-Value		
23%	Cavity	Studs	
Outside air film	0.17	0.17	
Exterior insulation	0	0	
7/16" OSB	0.62	0.62	
Cladding/Siding	0.62	0.62	
Framing - 2 x 6	n/a	5.83	
cavity insulation	35	n/a	
½" gypsum	0.45	0.45	
Interior air film	0.68	0.68	
Sub-Totals	37.54	8.37	
Total Wall R- Value	18.81		

3 Ways to improve Effective R-values

- More cavity insulation
- Advanced / Optimized framing
- Continuous insulation

Elements

- Two stud corners
- Ladder framing
- Wider stud spacings
- Properly sized
 headers
- Single top plates

COMPONENTS OF ADVANCED FRAMING

Houses constructed with advanced framing techniques may include some or all of the following details:

2 x 6 Wall Total Effective R-Value

Framing Percentage	R-Value		
19%	Cavity	Studs	
Outside air film	0.17	0.17	
Exterior insulation	0	0	
7/16" OSB	0.62	0.62	
Cladding/Siding	0.62	0.62	
Framing - 2 x 6	n/a	5.83	
cavity insulation	20	n/a	
½" gypsum	0.45	0.45	
Interior air film	0.68	0.68	
Sub-Totals	22.54	8.37	
Total Wall R- Value	16.22		

3 Ways to improve Effective R-values

- More cavity insulation
- Advanced / Optimized framing
- Continuous insulation

2 x 4 Wall + R5 Total Effective R-Value

Framing Percentage	R-Value		
25%	Cavity	Studs	
Outside air film	0.17	0.17	
Exterior insulation	5	5	
7/16" OSB	0.62	0.62	
Cladding/Siding	0.62	0.62	
Framing - 2 x 4	n/a	3.71	
cavity insulation	13	n/a	
½" gypsum	0.45	0.45	
Interior air film	0.68	0.68	
Sub-Totals	20.54	11.25	
Total Wall R- Value	15.54		

The dew point discussion

Condensation

The more insulation, the greater the risk

Moisture flows with air leakage

Seal air leaks to stop moist air from getting into cold cavities

Canada Mortgage and Housing Corporation

A typical temperature gradient through a wall.

Where is the 1st, solid condensing surface (where all the ACTION happens)?

The more important factor: Dew point

Condensation potential in walls Zone 5, 2x6 - R20 wall, OSB sheathing

The more important factor: Dew point

Reduced condensation potential in wall Zone 5, 2x6 - R20 + R5 sheathing

Vapor Permeance of Materials

Material	Imperial Permeance
6 Mil polyethylene	0.06 Perms
Drywall	20 - 60
Building paper	5-10
Structural Sheathing	
Wood	2 - 8
Plywood	0.75 - 3.5
OSB	0.75 - 2
Insulated Sheathing	
Foil Faced Poly Iso - 1"	0 to 0.01
XPS - 1"	0.75 - 1.5
EPS - 1"	2 - 4
EPS with foil face - 1"	0.5 - 1.5
WRBs	
Spun bonded Polyolefin	20 - 50
Coated Wraps	6 - 14

Class III Vapor retarders (semi-permeable) are permitted if:

Permeance of < 10 or >1.0

95

Climata Zana	Minimum Cont. Insulation R-Value		
Cimale Zone	2 x 4 walls	2 x 6 walls	
Marine & Zone 4	R-2.5	R-3.75	
Zone 5	R-5	R-7.5	
Zone 6	R-7.5	R-11.25	
Zones 7 & 8	R-10	R-15	

Insulated Sheathing will be Normal

It doesn't have to be foam

Effective R-Value of framed walls

Wall Options

Total Effective R-Value

Traditional 2 x 6 with R20 Batt insulation	15
Zero Energy Ready Wall for "Mild Climates":	
2" x 4" w/ R-15 Cavity + R-10 cont. ext. Insulation	21
Zero Energy Ready Wall or "Cold Climates":	
2" x 6" w/ R-23 cavity + R-10 cont. ext. insulation	27

Heat Transfer by Convection Convection loops occur in air gaps

There are 3 ways to reduce convection flow

Convective loop in attic insulation

- Mitigated by adding more insulation
- Avoid wind washing of insulation

Heat transfer by Radiation - surface to surface

There are 3 ways to optimize radiation flow

EEBA

Selective Low E coatings

Choose appropriate windows for your climate

NFRC NFRC National Fenestration Rating Council® CERTIFIED	World's Best Window Co. Series "2000" Casement Vinyl Clad Wood Frame Double Glazing•Argon Fill • Low E XYZ-X-1-00001-00001			
ENER	ENERGY PERFORMANCE RATINGS			
U-Factor (l	J.S. / I-P)	Solar He	at Gain Coefficient	
0.3	35		.32	
ADDITIO	ADDITIONAL PERFORMANCE RATINGS			
Visible Tran	smittance	Air Lea	akage (U.S. / I-P)	
0.5	51	<	0.3	
Condensation	Resistance			
5	1		-	

Methods of Air Flow

► Wind

Now consider Air Flow

Stack (Predominant) impact in cz 3-7

Mechanical

Reasons we want houses to be tight

- Most cost effective energy saving measure 20% 30% savings
- Makes homes quieter and cleaner
- Makes homes more "comfortable"
- Reduces water entry homes last longer
- Makes homes healthier controlled air quality
- Environmental benefits because we are not wasting energy

From an Energy Perspective we would like houses to be very tight

What are possible concerns about house being tight?

- Indoor Air Quality
 - Moisture problems
 - Chemical pollutants
- Combustion Safety
- "The walls have to breathe"

Wind effects are highly variable

Stack effect - pressures created by air temp. differences

Mechanical systems may adversely affect performance

Neutral pressure plane of building

- The neutral pressure plane will change
- Wind, stack & mechanical effects
- Its locations determines which holes leak and in which direction

Moisture laden air flow can create problems

Managing Air Flow

- Its difficult to manage the varying pressures
- Its most cost effective to make buildings tighter seal the holes

Finally... Moisture Flow A very complex subject

Forms of Moisture

Solid

Water in liquid form is the most concerning

► Liquid

► Vapor

Managing water is critical to sustainability

The 4th "phase? of water": Adsorbed

- Invisible, singular water molecules "stick" to surfaces (remember surface tension?)
- Layers of water molecules on surfaces increase as RH increases
- Porous surfaces are the most susceptible as the "RH" in the "pore" can increase to 100%

4 Moisture Flow Mechanisms

- Liquid Flow (gravity driven)
 - Rain
- Capillary
 - Material wicking
- Air Transport
 - Pressure induced flows of moisture laden air
- Diffusion
 - Vapor pressure drive

Liquid flow is the most important

Canada Mortgage and Housing Corporation

Managing liquid water flow

Water will get on the wall, so control it

- Once water is on the wall it <u>will form a film</u> and begin flowing downward under the force of gravity
- Wind on the surface can deflect the flow and in extreme cases may force the water upwards
- Surface features such as window / door openings and trims can greatly affect the flow path - concentrating or dispersing surface flows

We will always need to design and install claddings / windows that, once wet, can dry out.

Rain water control: Historical perspective

Protecting walls from Liquid Water

Cladding is only 1st line of defence. Water gets behind <u>ALL</u> types of cladding by: Liquid Capillary Air pressures

Methods of flow

Water is a powerful force in all it's forms

Follow the path of water; will it create a problem?

Gutters are important to any water management strategy

Kinetic Energy of a falling rain drop: 1st line of defense = The overhang!

Overhangs and peaked roofs can reduce rain deposition by 50% by shadowing and redirecting airflow

Figure A3-3 Typical rain wetting pattern on low-rise buildings (Straube and Burnett 2005).

The shape of roof and overhang has a critical impact

"The fundamental principle of water management is to shed water by layering materials in such a way that water is directed downwards and outwards out of the building or away from the building. The key to this fundamental principle is drainage. The most elegant expression of this concept is flashing. <u>Flashings are the most under-rated building enclosure component and arguably the most important</u>."

- EEBA (Energy & Environmental Building Association[™]) Water Management Guide by Joseph W. Lstriburek, Ph.D., P.eng. June 2004.

Deflection works! The forgotten art of "The Overhang"

Deflection works! The forgotten art of "The Overhang"

Capillary Flow

Capillary Flow

Wood & concrete wick water

- In wood water can climb in excess of 300 ft!
- In concrete water can climb in excess of 1,000 ft!

Capillary Flow

There are 2 ways to manage capillary flow

Create 1/4'' to 1/2'' gaps

There are 2 ways to manage capillary flow

Use capillary break materials

Historical lessons: Why some masonry walls fail (and why parging isn't just lip-stick!)

Courtesy buildingscience.com

Historical lessons: Why some masonry walls fail (and why parging isn't just lip-stick!)

IF foundation is still "connected" to soil(with water and salts), capillary action can lead to subfluorescence.

Spalling of porous materials—Without salt present evaporation of water from porous surfaces can often be easily managed—with salt present significant damage can occur.

Courtesy buildingscience.com

Rubble, Brick, CMU(and solid –pour) existing foundations :Parging may be critical critical

Courtesy buildingscience.com

Lessons we need to remember...

Air Barriers became part of North American Building Codes because of this....(not because it saved energy)

IN THE EARLY 1900'S WE SAW A NEED FOR VAPOR BARRIERS...

- Migration of moisture by means of vapour pressure differential
- Occurs in either direction based on climate conditions and interior levels of humidity
- A small amount of moisture movement
- ACCOUNTS FOR LESS THAN 2% OF
 ALL WATER IN ENCLOSURES.

IT TOOK UNTIL THE 1970'S FOR US TO FIGURE OUT IT WAS THE <u>AIR BARRIER</u>

THAT REALLY MATTERS.

Air Leakage

 Moisture flow through a 1in² hole by air leakage

Flow quantity

- 30 liters over the heating season
- A more significant flow

Air barriers are far more important than vapor retarders in most cases

AIR BARRIER / MOISTURE MOVEMENT BY AIR LEAKAGE

Why were AIR BARRIERS adopted by North American and Canadian building codes in the early 80's?....

Air tightness is tied to insulation levels

More insulation

Less Drying Potential and Colder surfaces

Vapor Diffusion is Complex

Winter

Summer

Vapor Diffusion

- Diffusion is a "weak" wetting mechanism
- ...But It can be a useful drying mechanism

- Increasing levels of insulation reduces the drying potential of assemblies (walls, roof, floors)
- Walls do not "breathe," but they do need protection from liquid water (rain) and interior condensation due to air leakage and cold condensing surfaces.
- Low permeability exterior insulation can be used as long as it is enough- e.g. the in-board/out board insulation levels are appropriate.
- Limiting air infiltration making walls "tighter"; reduces potential moisture damage inside walls.
- The 2 predominant sources of moisture in enclosures comes from rain water/exterior water and air leakage, not vapour diffusion.

The Physics of Buildings

- Moisture moves from more to less
- Moisture moves from warm to cold
- Heat flows from warm to cold
- CFM (air) out equals CFM (air) in
- Heat, air & moisture are one
- Drain the rain
- Things always get wet let them dry
- All the action happens at the surface

End of module One

- End of Module One
- In the next segment:

NOW THAT WE KNOW THE BUILDING SCIENCE BASICS....

We can begin to create walls, roofs and foundation systems that work

